(ﬁﬁ HEWLETT

PACKARD

HP-UX Reference
Vol. 1A: Section 1

HP-UX Reference
Vol. 1A: Section 1 (A through L)

for

HP Part Number 09000-90008- -

© Copyright 1985, 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett-
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend
Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional
copies of the programs can be made for security and back-up purposes only. Resale of the programs in their present form
or with alterations, is expressly prohibited.

© Copyright 1980, 1984, AT&T, Inc.
©.Copyright 1979, 1980, 1983, The Regents of the University of California.
This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the

Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

July 1985.. Edition 1. This manual replaces HP-UX Reference Manual 09000-90007 and doc-
uments HP-UX Release 5.0 for Series 200, 300 and 500.

November 1985.. Edition 2. Updated from Edition 1 to reflect Series 200/300 HP-UX Release
5.1 changes. Several omitted pages in Edition 1 were also added.

dJune 1986...Edition 3. Update 1 incorporated.
September 1986...Edition 3 Update 1. This update reflects additions and changes incorporated

in Series 500 HP-UX Release 5.1. Added command autobackup(1M) and core files support
(core(5)), changed blocksize limitations for SDF file formats, and fixed various bugs.

NOTICE
The information contained in this document is subject to change without notice.
HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO.
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable

for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

ii

TABLE OF CONTENTS

1. Commands

intro(1) introduction to Section 1
acctcom . search and print process accounting files
adb debugger
adjust simple text formatter

create and administer SCCS files
archive and library maintainer
. convert archives to new format
B tutteereeeteerteeete e —e et e e —aeatt e taeaabeasbea—stesbee et eest e e aaeente e nneenteeehbeeabeenhtenreesreesabeennee s assembler for MC68000
interpret ASA carriage control characters
execute commands at a later time

AEETTIL cvvviiiiiiii e general purpose asynchronous terminal emulation
AEFAILS +eeuveeeirerieieiie e et et eeete e st eesaneereraee s eaeeeaeeea bt s e e e e bt e s et e st e e e e e e shaesabeeab e saaes translate assembly language
awk text pattern scanning and processing language
DAIINET 1ottt make posters in large letters
basename extract portions of path names

. arbitrary-precision arithmetic language
big diff
................ big file scanner
change mode of a BIF file
change file owner or group

copy to or from BIF files
report number of free disc blocks

bifchmod
bifchown

... find files in a BIF system
biffsck Bell file system consistency check and interactive repair
DIESAD e Bell file system debugger
bifls list contents of BIF directories
bifmkdir make a BIF directory
bifmkfs construct a Bell file system
DITIIL coiie ettt ettt et sttt remove BIF files or directories

bs ... compiler/interpreter for modest-sized programs
cal print calendar
calendar reminder service
cat concatenate, copy, and print files
C program beautifier, formatter
................ C compiler
... change working directory
C, FORTRAN, Pascal symbolic debugger
change the delta commentary of an SCCS delta
.................................... generate C flow graph
. change program'’s internal attributes
change mode
change file owner or group

change default login shell
clear terminal screen
.. compare two files
filter reverse linefeeds and backspaces
COIMINL .oviveeiti it ene et e st sa e eae et er e s beetseseeese s et e ensebe e et s eabesaeessaneis select/reject common lines of two files
. compress and uncompress files, and cat them
copy, link or move files
copy file archives in and out
CPD teeetutreeeaiineeeeatire e e et e sttt e b e e b sttt s ab e sb b s b e s e aa e s s e e b e e eeaae s e bt e e e eabe e C language preprocessor
CTONEAD weiiiiiiii et e user crontab file
............. C shell
create a tags file

1-

Table of Contents

call another HP-UX system
cut out selected fields of each line of a file
generate C program cross-reference
.......... print and set the date
..................... desk calculator

..... convert, reblock, translate, and copy a (tape) file
make a delta (change) to an SCCS file
remove nroff/troff, tbl, and egn constructs
............... differential file comparator
3-way differential file comparison
... mark differences between files
directory difference comparison
summarize disk usage
echo (print) arguments
text editor
. text editor (variant of ex for casual users)
......... enable/disable LP printers
set environment for command execution
report error information on last failure
text editor commands
expand tabs to spaces, and vice versa
. evaluate arguments as an expression
... see fc
. factor a number, generate large primes
FORTRAN 77 compiler
...... determine file type
ettt ettt e r e st aenees find files
findmsg ... create message catalog file for modification
.... find strings for inclusion in message catalog
fix manual pages for faster viewing with man(1)
fold long lines for finite-width output device
generate a formatted message-catalog file
................... get a version of an SCCS file
BOEODE wenrteutenieitete ettt ettt ettt et e sttt b e ettt e b e et et e saa sttt en e e se et te s e esbesseentenn parse command options
get special attributes for group

grep search an ASCII file for a pattern
groups show group memberships

head ... give first few lines of file
D ettt e r et st e s b e et e b e et e s aeeenneennte e s reenteebeaenne ask for help

ROSEIAINE eeeiiiiiiiiiierit ettt se e s set or print name of current host system
handle special functions of HP 2640 and 2621 series terminals
find hyphenated words
... print user, group IDs and names
INSETEIMSE .eveviiiiiiiiieiiieeectt ettt e e use findstring output to insert calls to getmsg
iperm ... remove a message queue, semaphore set, or shared memory id
report inter-process communication facilities status
relational database operator
........................ terminate a process
. indicate last logins of users and teletypes
.. link editor
remind you when you have to leave
generate programs for lexical analysis of text
copy to or from LIF files
write LIF volume header on file
list contents of LIF directory

Table of Contents

lifrename
lifrm
line ...
linkinfo

... rename LIF files
..... remove a LIF file

read one line from user input
object file link information utility
a C program checker/verifier
... reserve a terminal

sign on
logname get login name
.... find ordering relation for object library
. send or cancel requests to an LP line printer
print LP status information
list contents of directories
list device drivers in the system
............ ... INAacro processor
. provide truth value about your processor type
...................... send mail to users or read mail
......................... send and receive mail

............................. maintain, update, recompile programs
... on-line manual command
. initialize hard disc, flexible disc, or cartridge tape media
... permit or deny messages to terminal
.. make a directory
... extract error messages from C source into a file
... print documents formatted with MM macros
file perusal filter for crt viewing
. magnetic tape manipulating program
. log in to a new group
............ print news items

run a command at low priority
........................ line numbering filter
print name list (symbol table) of object file
run a command immune to hangups, logouts, and quits
... format text
octal and hexadecimal dump
compress and expand files
. Personal Applications Manager, a visual shell
change login password
merge lines in one or more files
Pascal compiler
print files
preallocate disc storage

newgrp
news ...
nice

prealloc

53 (o) OO SO SO OSSO USROS PTRRPRRSRRORON display profile data
prs . print and summarize an SCCS file
0 ORI .. report process status
ptx create permuted index
pwd s working directory name

........... ... interactive IMAGE database access

rational FORTRAN dialect
reverse lines of a file
get HP-UX revision information
.. remove files or directories

.. remove a delta from an SCCS file
remove extra new-line characters from file
rtprio .. execute process with real-time priority
SACE eeieiiii e ... print current SCCS file editing activity

rev

Table of Contents

compare two versions of SCCS file
stream text editor
. shell, the standard command programming language
object file size
suspend execution for an interval
set printer options
... sort and/or merge files

...... find spelling errors

.......................... split a file into pieces

. remove multiple line-feeds from output

SELITIES wveeeeererrieneeeritereettesitee st esita e bt eseae e bt e b eeaeesteeenaeseesabeeseesnreenneeeannen find printable strings in binary file
strip . . remove symbols and relocation bits
SEEY wovreneeirie s set the options for a terminal port

become another user
print checksum and block count of a file
... update the super block
.. set tabs on a terminal
... deliver the last part of a file
... tape file archiver
format tables for nroff or troff
. CS/80 Cartridge Tape utility
.............................. pipe fitting
condition evaluation command
... time a command
update access/modification/change times of file
........................... ... query terminfo database
..... translate characters

.. provide truth values
termmal dependent initialization
topological sort
get the terminal’s name
do underlining
set file-creation mode mask
. print name of current HP-UX version
undo a previous get of an SCCS file
..... report repeated lines in a file
............ ... unit conversion program
unpack cpio archives from HP media
.. HP-UX to HP-UX copy; file transfer
list spooled uucp transactions grouped by transaction
show snapshot of the UUCP system
uucp status inquiry and job control
public HP-UX-to-HP-UX file copy
. HP-UX to HP-UX command execution
validate SCCS file
visual text editor

uusnap
uustat

VIS teteueeieeenteene et e ettt e e et st s b e saaeean s make unprintable characters in a file visible or invisible

await completion of process
WC v .. word, line, and character count
WHAL oottt et e sane e ... identify files for SCCS information
whereis locate source, binary, and/or manual for program
who which users are on the system
whoami . print effective current user id
write 1nteract1ve1y write (talk) to another user
Xargs ... construct argument list(s) and execute command

4-

Table of Contents

yet another compiler-compiler

1M. System Maintenance Utilities

accept .. allow or prevent LP requests
acct ... overview of accounting and miscellaneous accounting commands
ACCECINS vuveenireiireenieerieeert ettt e s e eanes command summary from per-process accounting records

acctecon connect-time accounting
acctmerg merge or add total accounting files
acctpre process accounting
acctsh .. shell procedures for accounting
backup .. backup or archive file system
bre system initialization shell scripts
captoinfo convert a termcap description into a terminfo description
catman create the cat files for the manual
CHTOOL ..iiieiiiiieiteeite ettt st ear e s e e change root directory for a command
chsys change to different operating system or version
CITL ettt ettt e h et e e ettt e n b e e et ene e et e be e e e bn et srnesaaeeas clear i-node
clrsve

config .. configure an HP-UX system

install object files in binary directories
.. clock daemon

............. device name
report number of free disk blocks
generate disc accounting data by user ID

cpset .

fsck file system consistency check, interactive repair
fsclean determine shutdown status of specified file system
FAD ettt ettt e e et e atesreeeeaeesnee e file system debugger
fwtmp .. manipulate wtmp records
getty set the modes of a terminal
GEEX2D eeenitieeieeetterte et e st et e e et s e e s bt s be st bt et et et enat e a bt e st e e ha e e bttt et s bt et e sareentrebe e baeenre e get x.25 line
ini process control initialization
................................. install commands

KERMIT-protocol file transfer program

KIHALL ottt et a et e ereaenarenne send signal to all user processes

link
Ipadmin

exercise link and unlink system calls
administer the LP spooling system
Ipsched start/stop the LP request scheduler and move requests
makekey . generate encryption key
.............. make device files

... construct a file system
configure the LP spooler system
............... create special, fifo, files
mount and unmount file system
......................... move a directory
generate names from i-numbers
construct a new file system

.. execute HALGOL programs
OSCK vttt check integrity of OS in SDF boot area(s)

0scp .. copy, create, append to, split operating system
OSIMATK .ovviiniiiiiiiiiiiiie e mark SDF OS file as loadable/unloadable
osmgr ... operating system manager package description
PWCK ettt ettt ettt e et e et e e e e et s be e et e e e et aennteenaeesenaeeabesaneen password/group file checkers
TEDOOT 1ireiitietie ittt ettt ettt ettt et e e st s e e te e e et e eare e ere e reboot the system

5

Table of Contents

TEVCK couveeieiiiiieiiieeeteee s ete e e s srreeeeine s e etaae e bbeeesaneeensreeesnsrnens check internal revision numbers of HP-UX files
. mark/unmark volume as HP-UX root volume
TUDACCE teuvvetiitiriiitieeeeiiteeeeiteeeeeseeeseseeeesseeensassessaraessassesassssessssssssessssesesssssasssssesanssessans run daily accounting

sdfinit ... initialize Structured Directory Format volume
SEEIMIE .eiuviiitieiiiiintie ettt ettt ettt e ae ettt e s h et e b e at s bee e bt et eat e eaneenes establish mnttab table
setprivgrp set special attributes for group
shutdown terminate all processing

SEOPSYS cveeenrermeeeeinnns ... stop operating system with optional reboot
SWaPON ..vveevrnvneerinne ... enable additional devices for swapping and paging
SYTICET oveirireeeniiiiieeiitieentee et et e s ete e e se s e neetn e e eneesnneeaeeesrsenenaesane periodically sync for file system integrity
tic ettt e e e aa e s ae s ne e sane terminfo compiler

tune a file system
uconfig ... system reconfiguration

XMODEM protocol file transfer program
terminfo de-compiler
uucp copy in and copy out
. uucp spool directory clean-up
monitor uucp network
uucp command execution

............... write to all users
... ... which users are doing what

uucico ..
uuclean .
uusub

2. System Calls

access determine accessibility of a file
ALAITIL Leoiiiiiici s e s set process’s alarm clock
change data segment space allocation
change working directory
.... change access mode of file
CHIOWIL 1ottt ettt et s ve et sae s et s seeesenesnnesabees change owner and group of a file
CRITOOL ©eeeeeeiiereeeet ettt ete et e e e et e e e s b e e be e e e e s e eabeeraesseensnesraaeaneenhaae change root directory
close close a file descriptor
creat .. create new file, rewrite existing file
duplicate an open file descriptor
duplicate an open file descriptor

BINIS 1uvviiteerieertieneeeiteeesae e st e e n e e e e e bet e she st e et e Re e e e s b e e ne e soae et e e enane s b e e b a e ae e eean Extended Memory System
EITIIO 1veutiniieiteie ettt sttt ettt et s b se e s b et e et e b e aeebe e saesae s bt ea st s b entenbeeneesaes error indicator
errno . error indicator for system calls

execute a file
terminate process
............... file control

........................ create a new process
synchronize a file’s in-core state with that on disc
get date and time more precisely
getgroups get group access list
GEtHOSENAIME ..oviiiiiiiiiiiiiiicr e e get name of current host
GEtILIMET ..viiiiiiiiiiiiiiic ... get/set value of interval timer
getpid get process, process group, and parent process IDs

GEEDIIVEID weeuviiiiiiiieientie ettt sttt e ee et e e sabesbee e get/set special attributes for group
gettimeofday . get/set date and time
GBI ot get real/effective user, real/effective group IDs

control device
send signal to process(s)
................... link to a file

Table of Contents

provide semaphores and record locking on files
move read/write file pointer; seek
memadvise ... advise OS about segment reference patterns
MEMAIIC 1oeiiiiiiiiiieiiiie ettt et seesaae b snnens allocate and free address space
MEMCHINA oottt change memory segment access modes
memlck lock /unlock process address space or segment
TOEIIIVATY coveuvuteresrereeesteseeseeseesessessesaensesestesensestesesansestasasesssssentesessessessenseneensessesensen modify segment length

.................................. create a directory file
make directory, special or ordinary file
mount a file system
. message control operations
........... get message queue
.......... message operations
change priority of a process
open file for reading or writing
...... suspend process until signal
.......... create an inter-process channel
lock process, text, or data in memory
preallocate fast disc storage

profil execution time profile
ptrace . process trace
read read from file
reboot reboot the system
rmdir remove a directory file
rtprio . change or read real-time priority
select synchronous I/O multiplexing
semctl semaphore control operations
SEIMIEEE tvviiuiiiitiitt ettt ettt ettt e st e et e et e et e aa e e b e ennaaenreenneenreeenaens get set of semaphores
semop semaphore operations
SEEGTOUDS 1eveeuriiutieeruiieenieeiter et esieeesrees st e e s ee st tesaee st et e esaesbeensseebsesssaessbeessaeesssesnnaeenaaennen set group access list
sethostname set name of host cpu
setpgrp set process group ID
setuid set user and group IDs
shmetl shared memory control operations
SHINEEE ittt r e get shared memory segment
shmop shared memory operations
sigblock block signals
signal set up signal handling for program
sigpause automatically release blocked signals and wait for interrupt

SIBSEEIMASK +euvieuiiiiiiiiieiiiiicet ettt sttt sttt ens set current signal mask
sigspace assure sufficient signal stack space
sigvector software signal facilities

SEAL tereiritiit ettt r e e b e e sa e e et e s aaeeene e e ene e s b e e nneeestenaeaaen get file status
stime .. set time and date
stty ... control device
swapon add a swap device for interleaved paging/signalling
Syne ... update the super block
time ... get time
times . get process and child process times
1725103 4 R PPN hardware trap numbers
truncate . . truncate a file to a specified length
UHINIE ©eevieienteeeeieteee ettt et e e te s te s saa st e stesbeatesta e s ensesseansaensasaasssessenns get and set user limits
umask get and set file creation mask
umount unmount a file system

get name of current HP-UX system

-7-

Table of Contents

.. remove directory entry; delete file
.. get file system statistics
set file access and modification times
spawn new process in a virtual memory efficient way
advise system about backing store usage
. advise OS about backing store devices
wait for child process to terminate
write on a file

AB4L ettt nees convert between long and base-64 ASCII
generate an IOT fault
integer absolute value
program verification
convert ASCII to numbers
bessel functions
binary search on a sorted table
MPE/RTE-style message catalog support
report CPU time used
character translation
..................... DES encryption
generate file name for terminal
convert date and time to ASCII
................ character classification

CRT screen handling and optimization routines
character login name of the user
establish an out-going terminal line connection
directory operations
generate uniformly-distributed pseudo-random numbers
output conversion

catread
clock ..
conv ..
crypt ..
ctermid
ctime .
ctype .
curses ...
cuserid
dial
directory
drand48

end last locations in program
<3 AU U TP ST UPPRRRITPN error function and complementary error function
exp exponential, logarithm, power, square root functions
TCLOSE ettt ettt s s ebr e eanesre e eaas close or flush a stream
FOITOT oottt ettt sttt st s re e es e s eaa e e e sare e bt ebeeeaneeae s stream file status inquiries
floor absolute value, floor, ceiling, remainder functions
fopen .. . open or re-open a stream file; convert file to stream

FTEAA 1evvevieeeierii ettt buffered binary input/output to a stream file
split into mantissa and exponent
reposition a stream
walk a file tree

.. log gamma function
.. get character or word from stream file
. get pathname of current working directory
getenv value for environment name
getfsent ... get file system descriptor file entry
BEEGTEIE oviniiiiiiiiiii ittt e b e eb e get group file entry
BOELOZIIL ©eevteeiiiiiiee ittt ettt ettt sttt et ab et e e e e et et e saa e st saeesas s get login name
getmsg ... get message from a catalog

getopt .. get option letter from argv
BEEDASS cuvetiiiitieet ittt ettt et e e e h e s b a e e e ae e e s b s b e e s as e ae e e s b areeas read a password
BOEDW 1eeueieeieteetee ettt et e e st ettt e et e e et e te s he e et e h e et et h e et e e ehse e bt e e ne e teenaee e bt e beeeabaenaeeas get name from UID
BEEDWEILE 1eveiiteiiirienieeeieesee et ettt et eseeeett e et eessaessseenseessbeseaneenbeenaseesneeenseesabeenseesstenane get password file entry

Table of Contents

BEES 1ottt bbbt sa e e e a e can e an s ... get a string from a stream file
BEEUL vttt ittt ettt et et et e e bt anene s access utmp file entry
gpio_get_status return status lines of GPIO card
gpio_set_ctl set control lines on GPIO card
hpib_abort stop activity on specified HP-IB bus
hpib__bus_status return status of HP-IB interface
hpib__card_ppoll_resp control response to parallel poll on HP-IB
hpib__eoi_ctl control EOI mode for HP-IB file
hpib_io perform I/O with an HP-IB channel from buffers
hpib_pass_ctl change active controllers on HP-IB
BPIb__pPOll oo conduct parallel poll on HP-IB bus
hpib_ppoll__resp_ctl . control response to parallel poll on HP-IB
hpib_ren__ctl control the Remote Enable line on HP-IB
hpib_rqgst_srvce . allow interface to enable SRQ line on HP-IB
hpib_send _cmnd send command bytes over HP-IB
RPID_SPOIL .ottt conduct a serial poll on HP-IB bus
hpib_status_wait . wait until the requested status condition becomes true

hpib_wait_on_ppollcccceeiiriiniieeeeeeees wait until a particular parallel poll value occurs
RISEATCH Lottt a e s manage hash search tables
hypot Euclidean distance
initgroups initialize group access list
INETAPOLT . disable/enable integer trap handler
io_burst .. . perform low-overhead I/0 on an HP-IB channel
io_eol_ctl ...cooverunennen. . set up read termination character on special file

determine how last read terminated
enable/disable interrupts for associated eid
. device interrupt (fault) control
.... reset an I/O interface
inform system of required transfer speed
establish time limit for I/O operations
set width of data path
13tol . convert between 3-byte integers and long integers
langinfo NLS native language information
LOGNAINE .evviiiiiiiiiniecitci ettt s return login name of user
Isearch .. linear search and update
INALOC weeiniieiieeieie ettt st et e e st et e st e e st et e e e e e e te b e nateshtesnraeennneens main memory allocator
matherr mathematical error handling

io_get__term_reason
io__interrupt_ctl
io_on__interrupt .
io_reset
io_speed_ctl
io__timeout_ctl
io_width_ctl

memory memory operations
mktemp .. make a unique file name
monitor prepare execution profile
nl_conv .. . translate characters for use with NLS

nl_ctype classify characters for use with NLS
nl_string . non-ASCII string collation used by NLS
TS ettt bbb get entries from name list

perror system error messages
popen ... initiate pipe I/O to/from a process
printf output formatters
printmsg print formatted output with numbered arguments

putc e s e are e e e s taanes put character or word on a stream
putenv .. change or add value to environment
PUEDWENE 1oviviiniiiiieici e write password file entry
put a string on a stream file
quicker sort
... random number generator
TEECIID woeviuviueesressenuesreseeneesiesssesesseeseesbensesmeebessneneersessenseessesnesanens compile and execute regular expression

Table of Contents

formatted input conversion, read from stream file

...... assign buffering to a stream file
........................ non-local goto
... hyperbolic functions
suspend execution for interval

sputl . . access long integer data in machine-independent manner
ssignal software signals
stdio standard buffered input/output stream file package
stdipc stamdard inter-process communication package
string character string operations
strtod convert string to double-precision integer
SEEEO] ceveiviiiiiiieir et .. convert string to integer
SWAD eeieeeiieieee et e st e e e et e e ee et s e e e bt e s r b e e te e bae st e s sanateeeeesa e e et e e hneane st eeaeaanstennee swap bytes
system issue a shell command
termcap access terminal capabilities in termcap(5)
tmpfile create a temporary file
tmpnam create a name for a temporary file
L5 o -SSRSO U PRSP PTOURTRUPOORRRRN trigonometric functions
tsearch .. . manage binary search trees
BEFIAINIE 1oieeiiiiiieiiiercet ettt st sre e et e st et eseae s et sne e et n e et e enneenee find name of a terminal
ttyslot find current user slot in utmp file
ungetc ... push character back into input stream
vprintf .. print formatted output from varargs argument list

4. Special Files

.... CS/80 cartridge tape access
SC ceveeiteeeete et et e et e ettt st e et b et h e s e e e st e bt e es bt e h b e e et e e nneeat e e neeabe et reenee bt ennen direct disc access

graphics . information for crt graphics devices
RIDID ettt et et enee hpib interface information

physical address mapping
printer information
core memory
asynchronous serial modem line control
................. magnetic tape interface and controls
null file ("bit bucket”)
pseudo-terminal driver
version 6/PWD-compatibility terminal interface
............................... general terminal interface
controlling terminal interface

5. File Formats

a.out ..
acct .

. assembler and link editor output

per-process accounting file format
archive file format
Bell Interchange Format file utilties

ChECKISE weveiirieeiiieee et s list of file systems processed by fsck
col_seq_38 ... collating sequence tables for 8-bit NLS character sets
col_seq—16 . collating sequence tables for 16-bit NLS character sets
core format of core image file

cpio
dialups ..

format of cpio archive
dialup security control

Table of Contents

dir
disktab
errfile ..

SDF directory format
.... disc description file
.. system error logging file

format of system volume
format specification in text files
. speed and terminal settings used by getty(1M)

fspec
gettydefs

group group file
inittab . control information for init(1M)
inode format of an i-node
issue ... issue identification file
Iif Logical Interchange Format description

TNAGIC tevrrrirrrieeiiiierteesreeieeeeeeeteeeseesstaeassessaeasseessessnseesseessaeesseanes magic numbers for HP-UX implementations
MNASEET weiiiiiiiiiiiiiicci b ear e e master device information table
TOKIIOA 1oeiiiiiitineeeet ettt ettt sae s e e st bt en et e be et e b e ebe s bebeebessnase s eesaasen create a special file entry

...... mounted file system table
HP-UX machine identification
nlist structure format
................ password file

privgrp ... e privileged values format
profile set up user’s environment at login time
ranlib table of contents format for object libraries

scesfile ... format of SCCS file
L7535 5« O OO PRU PSSO PP USTRUPPURTPTRRPPTRPRN compiled term file format
BEITIINTO +eveiiiiieiiiiee ettt e et e sve et b e e e et e re et e et e aaenaen -terminal capability data base
ttytype .. data base of terminal types by port
utmp utmp and wtmp entry format

6. Games

No games are currently supported.

7. Miscellaneous Facilities

ASCHL 1eetiiitietee e ettt e ettt ettt et e e et e e e et e en e e e et e e sreesre e saeenn ... map of ASCII character set

user environment
file control options
file system hierarchy
.... Native Language Support model
.. map of KANAS character set used by NLS
. language identification variable used by NLS
macros for formatting entries in this manual
math functions and constants

mm the MM macro package for formatting documents
regexp . .. regular expression compile and match routines
TOIMANE 1.iuiiiiiiiitiiiiieit ettt et see e e b e s eee e sb e ne e ss s saaeeeneeeeneeanee ROMANS character set used by NLS
stat .o fovenen data returned by stat/fstat system call
term ... conventional device names
types ... primitive system data types

VAIUES ©eeeuureiiiienieeeeetee it et ee et e te e e e st e esea e tte e taaeesseensaenseserssensseeaseeneeeseesaeeeseeeneean machine-dependent values
varargs handle-variable-argument list

-11-

Table of Contents

9. Glossary

-12-

INTRODUCTION

The HP-UX Reference describes the features of HP-UX in an alphabetical reference format
arranged within several topical blocks. It is written for the user who is already familiar with
UNIX or UNIX-like operating systems (UNIX is a trademark of AT&T technologies, Inc.). The refer-
ence is intended as a source for specific details concerning the HP-UX operating system.

For a general overview of HP-UX, see the supplied tutorial text Introducing the UNIX System.
System implementation and maintenance details are explained in the HP-UX System Administra-
tor Manual.

This manual is divided into several sections contained in four volumes:

Section 1 (Commands and Application Programs) describes programs intended to be
invoked directly by users or command language procedures, as opposed to system
calls (section 2) or subroutines (section 3) which are intended to be called by
user programs. Commands usually reside in the directory /bin (for binary pro-
grams). Some programs reside in /usr/bin to save space in /bin and to reduce
search time for commonly-used commands. These directories are normally
searched automatically by the command interpreter called the shell (sh(1)). A
few commands are also located in /lib and /usr/lib.

Section 1M (System Maintenance Procedures) describes commands used for system mainte-
nance including boot processes, crash recovery, system integrity testing, and
other needs. This section contains topics that pertain primarily to system
administrator and super-user tasks.

Section 2 (System Calls) describes entries into the HP-UX kernel, including the C language
interface.
Section 3 (Subroutines)describestheavailable Their binary versions reside in various system

libraries in.the directories /lib and /usr/lib. See intro(3) for descriptions of
these libraries and the files where they are stored.

Section 4 (Special Files) discusses the characteristics of special (device) files that provide
the link between HP-UX and system I/O devices. The names for each topic usu-
ally refer to the type of I/O device rather than to the names of individual special
files.

Section 5 (File Formats) documents the structure of various kinds of files. For example,
the link editor output-file format is described in a.out(5). Files that are used
only by a single command (such as intermediate files used by assemblers) are not
described. The C language struct declarations corresponding to the formats in
this section can be found in the directories /usr/include and

/usr/include/sys.
Section 6 (Games) is not present because no games are currently supported on HP-UX.
Section 7 (Miscellaneous Facilities) contains a variety of information such as descriptions

of character sets, macro packages, and other topics.

Section 8 contains no topics. Items previously in Section 8 have been moved to Section
1M in Volume 2. Intro(8) is located as the last page in section 7. There is no
tab divider for section 8.

Section 9 (Glossary) defines selected terms used in this manual.

Each section (except 9) consists of a number of independent entries of one or more pages each.
The entry name appears on the upper corners of each page, and entries are arranged alphabeti-
cally (except for the introductory entry at the beginning of each section). Page numbering is
arranged so that each entry starts on its own page 1. Some entries describe multiple commands,
routines, etc. In such cases, the entry appears only once, arranged under its “major’’ name.

Hewlett-Packard -1- November 19, 1985

ENTRY FORMATS
All entries follow an established topic format, but not all topics are included in each entry.
NAME gives the name(s) of the entry and briefly states its purpose.

SYNOPSIS summarizes the use of the entry or program entity being described. A few con-
ventions are used:

Boldface strings are literals, and are to be typed exactly as they appear in the
manual.

Italic strings represent substitutable argument names and program names found
elsewhere in the manual.

Square brackets [] around an argument name indicate that the argument is
optional.

Ellipses (...) are used to show that the previous argument can be repeated.

A final convention is used by the commands themselves. An argument beginning
with a dash (-), a plus sign (+), or an equal sign (=) is often taken to be some
sort of flag argument, even if it appears in a position where a file name could
appear. Therefore it is unwise to have files names that begin with —, +, or =.

HP-UX COMPATIBILITY
shows the entry’s HP-UX level and origin, based on the HP-UX Compatibility
Model discussed later in this introduction. This part of the entry also shows
whether an optional HP software package is required.

DESCRIPTION
discusses the function and behavior of each entry.

HARDWARE DEPENDENCIES
points out variations in HP-UX operation that are related to the use of specific
hardware or combinations of hardware. Any references to Series 200 com-
puters in this manual set apply equally to Series 300 unless specifically
noted to the contrary.

EXAMPLES provides examples of typical usage, where appropriate.
FILES lists file names that are built into the program or command.

RETURN VALUE
discusses various values returned upon completion of program calls.

SEE ALSO provides pointers to related topics.

DIAGNOSTICS
discusses. diagnostic indications that may be produced. Self-explanatory mes-
sages are not listed.

WARNINGS points out potential pitfalls.

BUGS discusses known bugs and observed deficiencies. Occasionally, suggested fixes are
provided.

A table of contents and permuted index are included at the beginning and end, respectively, of
each volume or binder. On each permuted index line, the title of the entry to which the line
refers is followed by the appropriate section number listed in parentheses. This is important
because names are frequently duplicated in various sections, particularly where commands were
implemented to access certain system calls of the same name.

Hewlett-Packard -2- November 19, 1985

HOW TO GET STARTED

This discussion provides the basic information you need to get started on HP-UX: how to log in
and log out, how to communicate through your machine, and how to run a program. (See the sup-
plied tutorial text for more complete introduction to the system.)

Logging In

To log in you must have a valid user name, which may be obtained from the system. administra-
tor of your system. Keep pressing the “break” or “del” until the login: message appears.

When a connection has been established, the system types login: and you then type your user
name followed by pressing the “return” key (or "enter” key, on some terminals). If you have a
password (and you should!), the system asks for it, but does not print it on the terminal.

It is important that you type in your login name in lower case if possible if you type upper-case
letters, HP-UX assumes that your terminal cannot generate lower-case letters, and that all subse-
quent upper-case input is to be treated as lower case. When you have logged in successfully, the
shell types a $. (The shell is described below under How to run a program.)

For more information, consult login(1) and getty(8), which discuss the login sequence in more
detail, and stty(1), which tells you how to describe the characteristics of your terminal to the sys-
tem (profile(5) explains how to accomplish this last task automatically every time you log in).

Logging Out

You can log out by typing an end-of-file indication (ASCII EOT character, usually typed as
“control-d”) to the shell. The shell will terminate and the login: message will appear again.

How to Communicate Through Your Terminal

When you type to HP-UX, the system usually gathers your characters and saves them. These char-
acters will not be given to a program until you type a “return” (or a “new-line”).

HP-UX terminal input/output is full-duplex. It has full read-ahead, which means that you can
type at any time, even while a program is is printing on your display or terminal. Of course, if
you type during output, the output will have the input characters interspersed in it. However,
whatever you type will be saved and interpreted in the correct sequence. There is a limit to the
amount of read-ahead, but it is generous and not likely to be exceeded unless the system is in
trouble. When the read-ahead limit is exceeded, the system throws away all the saved characters.

On an input line from the terminal, the character @ “kills” all characters typed before it. The
character # erases the last character typed. Successive uses of # will erase characters back to, but
not beyond, the beginning of the line; @ and # can be typed as themselves by preceding them
with \ (thus to erase a \, you need two #s). These default erase and kill characters can be
changed, and usually are (see stty(1)).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is useful with
CRT terminals to prevent output from disappearing before it can be read. Output is resumed
when any character is typed. If DC1 (control-q) or DC3 are used to restart the program, they
are not saved and passed to later programs. Any other characters are saved and passes as output
to later programs.

Hewlett-Packard -3- November 19, 1985

The ASCII DEL character (sometimes labelled “rubout” or “rub”) is not passed to programs, but
instead generates an interrupt signal , just like the “break”, “interrupt”, or “attention” signal.
This signal generally causes whatever program you are running to terminate. It is typically used
to stop a long printout that you don‘t want. However, programs can arrange either to ignore this
signal altogether, or to be notified when it happens (instead of being terminated). The editor
ed(1), for example, catches interrupts and stops what it is doing, instead of terminating, so that
an interrupt can be used to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII octal 34 (control-\) character. It causes a running
program to terminate.

Besides adapting to the speed of the terminal, HP-UX tries to be intelligent as to whether you
have a terminal with the “new-line” key, or whether it must be simulated with a “carriage-return”
and “line-feed” pair. In the latter case, all input “carriage-return” characters are changed to
“line-feed” characters (the standard line delimiter), and a “carriage-return” and “line-feed” pair is
echoed to the terminal. If you get into the wrong mode, see stty(1).

Tab characters are used freely in HP-UX source programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and echoed
as spaces during input (not currently supported on Series 500). The stty(1) command will set or
reset this mode. The system assumes that tabs are set every eight character positions. The tabs(1)
command will set tab stops on your terminal, if that is possible.

How to Run a Program

When you have successfully logged into HP-UX , a program called the shell is listening to you ter-
minal. The shell reads the lines you type, splits them into command names and arguments, and
executes the command. A command is simply an executable program. Normally, the shell looks
first in your current directory (see The current directory below) for a program with the given
name, and if none is there, then in system directories. There is nothing special about system-
provided commands except that they are kept in directories where the shell can find them. You
can also keep commands in your own directories and arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the command and its argu-
ments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you to indi-
cate that it is ready for another command. The shell has many other capabilities, which are
described in detail in sh(1).

The Current Directory

HP-UX has a file system arranged in a hierarchy of directories. When the system administrator
gave you a user name, he or she also created a directory for you (ordinarily with the same name
as you user name, and known as your login or home directory). When you log in, that directory
becomes your current or working directory, and any file name you type is assumed to be in that
directory by default. Because you are the owner of this directory, you have full permissions to
read, write, alter, or destroy its contents. the permissions you have in other directories and files
will have been granted or denied to you by their respective owners, or by the system administra-
tor. To change the current working directory use cd(1).

Hewlett-Packard -4- November 19, 1985

Path Names

To refer to files not in the current directory, you must use a path name. Full path names begin
with /, which is the name of the root directory of the whole file system. After the slash comes the
name of each directory containing the next sub-directory (followed by a /), until finally the file
name is reached (e.g., /usr/ae/filex refers to file filex in directory ae, while ae is itself a sub-
directory of usr ; usr springs directly from the root directory). See the glossary for a formal
definition of path name.

If you current directory contains subdirectories, the path names of files therein begin with the
name of the corresponding subdirectory (without a prefixed /). Without important exception, a
path name may be used anywhere a file name is required.

Important commands that modify the contents of files are ¢p(1), mv(1), and rm(1), which respec-
tively copy, move (i.e., rename), and remove files. To find out the status of files or directories, use
Is(1). Use mkdir(1) for making directories and rmdir(1) for destroying them.

For a more complete discussion of the file system, see the references cited at the beginning of the
Introduction above. It may also be useful to glance through Section 2 of this manual, which
discusses system calls, even if you don’t intend to deal with the system at that level.

Writing a Program

To enter the text of a source program into an HP-UX file, use ed(1), ez(1), or vi(1). The three
principal languages available under HP-UX are C (see cc(1)), FORTRAN (see fc(1)or f77(1)), and
Pascal (see pc(1)). After the program text has been entered with the editor and written into a
file (whose name has the appropriate suffix), you can give the name of that file to the appropriate
language processor as an argument. Normally, the output of the language processor will be left in
a file in the current directory named a.out (if that output is precious, use mv(1) to give it a less
vulnerable name). If the program is written in assembly language, you will probably need to link
library subroutines with it (see /d(1)). FORTRAN , C, and Pascal call the linker automatically.

When you have gone through this entire process without encountering any diagnostics, the result-
ing program can be run by giving its name to the shell in response to the $ prompt.

Your programs can receive arguments from the command line just as system programs do by
using the arge, argv, and envp parameters. See the supplied C tutorial for details.

Text Processing

Almost all text is entered through editors ed(1), ez(1), or vi(1). The commands most often used
to write text on a terminal are cat(1) and pr(1). The cat(1) command simply dumps ASCII text
on the terminal, with no processing at all. The pr(1) command paginates the text, supplies head-
ings, and has a facility for multi-column output.

Surprises

Certain commands provide inter-user communication. Even if you do not plan to use them, it
would be well to learn something about them, because someone else may direct them toward you.
To communicate with another user currently loggin in, write(1) is used; mal(1) or maslz(1) will
leave a message whose presence will be announced to another user when he or she next logs in.
The corresponding entries in this manual also suggest how to respond to these commands if you
are their target.

When you log in, a message-of-the-day may greet you before the first $§ prompt.

Hewlett-Packard -5- November 19, 1985

HP-UX COMPATIBILITY MODEL

HP-UX is AT&T System V plus "HP value added”. HP value added includes both Hewlett-
Packard capabilities, such as graphics, and features from other UNIX systems, such as those from
the University of California at Berkeley.

Compatibility Levels

The various HP-UX systems are listed below in order of increasing completeness; each contains all

the elements of the previous one.

HP-UX/RUN ONLY

HP-UX/NUCLEUS

HP-UX DEVELOPMENT

HP-UX STANDARD

HP-UX EXTENDED

OPTIONAL

NON-STANDARD

Hewlett-Packard

This describes a run-only kernel with no commands or applica-
tions attached.

This is the run-only kernel plus a minimum set of commands. It
also provides a minimum command interpreter to permit access
to the commands. '

This is the first “normal” UNIX , but it does not include the full
UNIX command set.

This is a nearly complete UNIX. It includes most of the capabil-
ities from AT&T, but not everything that HP will make avail-
able.

This is the largest standard package. It contains almost every-
thing HP-UX has to offer (a few AT&T capabilities are not
included).

For the purposes of the model, there are also capabilities that
are never required, even at the HP-UX/EXTENDED level.
The term OPTIONAL designates capabilities in this category.

This designation is given to those keywords which have either
not yet been approved as part of the HP-UX standard, or never
will be.

-6 - November 19, 1985

INTRO (1) INTRO (1)

NAME
intro - introduction to commands and application programs
DESCRIPTION
This section describes, in alphabetical order, publicly—accessible commands. Certain distinctions
of purpose are made in the headings:
1) Commands of general utility.
(1C) Commands for communication with other systems.
(1G) Commands used primarily for graphics and computer-aided design.
COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and other arguments
according to the following syntax:

name [option(s)] [cmdarg(s)]

where:
name The name of an executable file.
option - noargletter(s) or,

- argletter<>optarg
where <> is optional white space.

noargletter A single letter representing an option without an argument.

argletter A single letter representing an option requiring an argument.
optarg Argument (character string) satisfying preceding argletter.
cmdarg Path name (or other command argument) not beginning with - or, - by itself indi—

cating the standard input.

HP-UX COMPATIBILITY
Level: This describes where in the HP-UX compatibility model this capability appears. See
the Introduction to this manual for a detailed explanation of the model.

Origin: This gives authorship credit as appropriate. The following abbreviations are used:
System III means from Bell UNIX System III.
System V' means from AT&T UNIX System V (release 2 unless noted otherwise).

HP means written by HP.

UCB means derived from U. C. Berkeley 4.1BSD.

V&4 means included for UNIX Version 7 compatibility (and not in Bell System
V).

Requires: This indicates any special hardware or software requirements for the code to operate
properly. If a capability deviates from the HP-UX standard, the deviations will be
displayed in one of two ways. Minor deviations will be in separate sections in the
body of the manual. New pages will be generated where necessary, and the top center
of the page will indicate the deviation.

Remarks: identifies which implementation(s) are described by the manual page.

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands. Certain distinctions
of purpose are made in the headings:

(1) Commands of general utility.
(1C) Commands for communication with other systems.

Hewlett—Packard -1- July 9, 1985

INTRO (1) INTRO(1)

(1G) Commands used primarily for graphics and computer-aided design.
(1IM) Commands used primarily for system maintenance.

HARDWARE DEPENDENCIES

This section gives details about specific implementations of HP-UX that deviate from information
already given for that manual entry. It is very important that you check this section, if present,
to make sure that certain options and/or capabilities are implemented on your computer. If there
are extensive changes, new manual pages are generated and flagged as being implementation
specific.

SEE ALSO

The SEE ALSO entries are chosen in part to guide the reader to related topics that might prove
useful. The list may not always be relevant, depending on the user’s needs. SEE ALSO entries
may refer to capabilities not available in all implementations if they are relevant in the more com—
plete implementations. Examples of SEE ALSO entries are:

getopt(1), exit(2), wait(2), getopt(3C).
Introduction to the HP-UX Reference at the front of this volume.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied by the system and

giving the cause for termination, and (in the case of “normal” termination) one supplied by the

program (see wait(2) and exit(2)). The former byte is O for normal termination; the latter is cus—

tomarily O for successful execution and non-zero to indicate troubles such as erroneous parame—

ters, bad or inaccessible data, or other inability to cope with the task at hand. It is called vari-
LR NS

ously “‘exit code”, “‘exit status”, or “return code”, and is described only where special conventions
are involved.

Unfortunately, many commands do not adhere to the aforementioned syntax.

WARNINGS

Some commands produce unexpected results when processing files containing null characters.
These commands often treat text input lines as strings and therefore become confused upon
encountering a null character (the string terminator) within a line.

Hewlett—Packard -2- July 9, 1985

ACCTCOM (1) ACCTCOM(1)

NAME

acctcom - search and print process accounting file(s)

SYNOPSIS

acctcom [[options][file]] . . .

HP-UX COMPATIBILITY

Level: HP-UX/EXTENDED - multi-user
Origin: System III

DESCRIPTION

Acctcom reads file, the standard input, or /usr/adm/pacct, in the form described by acct(5)
and writes selected records to the standard output. Each record represents the execution of one
process. The output shows the COMMAND NAME, USER, TTYNAME, START TIME, END
TIME, REAL (SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork/ezec flag: 1
for fork without ezec), STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU
FACTOR, CHARS TRNSFD, and BLOCKS READ (total blocks read and written).

The command name is prepended with a # if it was executed with super-user privileges. If a
process is not associated with a known terminal, a ? is printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a terminal or /dev/null (as is
the case when using & in the shell), /usr/adm/pacct is read; otherwise, the standard input is
read.

If any file arguments are given, they are read in their respective order. Each file is normally read
forward, i.e., in chronological order by process completion time. The file /usr/adm/pacct is
usually the current file to be examined; a busy system may need several such files of which all but
the current file are found in /usr/adm/pacct? The options are:

-a Show some average statistics about the processes selected. The statistics will be
printed after the output records.

-b Read backwards, showing latest commands first. This option has no effect when the
standard input is read.

-f Print the fork/ezec flag and system exit status columns in the output.

-h Instead of mean memory size, show the fraction of total available CPU time con—

sumed by the process during its execution. This “hog factor’ is computed as:
(total CPU time)/(elapsed time).

-i Print columns containing the I/O counts in the output.

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user—time).

-t Show separate system and user CPU times.

-v Exclude column headings from the output.

-1 line Show only processes belonging to terminal /dev/line.

-u user Show only processes belonging to user that may be specified by: a user ID, a login

name that is then converted to a user ID, a # which designates only those processes
executed with super—user privileges, or ? which designates only those processes asso—
ciated with unknown user IDs.

-g group Show only processes belonging to group. The group may be designated by either the
group ID or group name.

-8 time Select processes existing at or after time, given in the format hr[:min [:sec]].

-e time Select processes existing at or before time.

-S time Select processes starting at or after time.

-E time Select processes ending at or before time. Using the same time for both -S and -E

shows the processes that existed at time.

Hewlett—Packard -1- July 19, 1985

ACCTCOM(1)

-n pattern
-q

-0 ofile
-H factor
-0 time

-C sec
-I chars

ACCTCOM (1)

Show only commands matching pattern that may be a regular expression as in ed(1)
except that + means one or more occurrences.

Do not print any output records, just print the average statistics as with the -a
option.

Copy selected process records in the input data format to ofile; supress standard
output printing.

Show only processes that exceed factor, where factor is the ‘hog factor” as
explained in option -h above.

Show only those processes with operating system CPU time that exceeds time.

Show only processes with total CPU time, system plus user, exceeding sec seconds.
Show only processes transferring more characters than the cut—off number given by
chars.

Listing options together has the effect of a logical and.

FILES

/etc/passwd

/usr/adm/pacct

/etc/group

SEE ALSO

ps(1), su(l), acct(1M), acctems(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M),
fwtmp(1M), runacct(1M), acct(2), acct(5), utmp(5).

BUGS

Acctcom only reports on processes that have terminated; use ps(1) for active processes. If time
exceeds the present time, then time is interpreted as occurring on the previous day.

Hewlett—Packard

-2~ July 19, 1985

ADB(1)

Series 200 Only ADB(1)

adb - debugger

SYNOPSIS

adb [-w | [objfil [corfil]]

HP-UX COMPATIBILITY

Level: HP-UX/DEVELOPMENT
Origin: System III
Remarks: Adb is implemented on the Series 200 only.

DESCRIPTION

Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of HP-UX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then the
symbolic features of adb cannot be used although the file can still be examined. The default for
objfil is a.out. Corfil is assumed to be a core image file produced after executing objfil; the
default for corfil is core.

Requests to adb are read from the standard input and responses are to the standard output. If
the -w flag is present then 0bjfil is created if necessary and opened for reading and writing so that
it can be modified using adb. Adb ignores QUIT; INTERRUPT causes return to the next adb com-
mand.

In general requests to adb are of the form
[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to 0. For most commands
count specifies how many times the command will be executed. The default count is 1. Address
and count are expressions.

The interpretation of an address depends on the context in which it is used. If a subprocess is
being debugged then addresses are interpreted in the usual way in the address space of the sub-
process. For further details of address mapping see ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.
” The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by 0x; a
decimal number if preceded by 0d; otherwise the base of integer is whatever the default
number base for input is. This base is initialized to hexadecimal.

integer.fraction
A 32 bit floating point number.

tccce! The ASCII value of up to 4 characters. \ may be used to escape a /.

< name
The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (see VARIABLES) named by single letters or digits. If name is a
register name then the value of the register is obtained from the system header in corfil.
The register names are a0 ... a6 d0 ... d7 sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. The value of the symbol is taken from the symbol table in objfil. An initial
— will be inserted at the beginning of symbol if needed.

Hewlett—Packard -1- July 2, 1985

ADB(1) Series 200 Only ADB(1)

__ symbol
In C, the “true name” of an external symbol begins with __. It may be necessary to utter
this name to distinguish it from a symbol generated in assembly language.

(ezp) The value of the expression ezp.
Monadic operators:
*xezp The contents of the location addressed by ezp in corfil.
@ezp The contents of the location addressed by ezp in obgfil.
-ezp Integer negation.
“ezp Bitwise complement.
Dyadic operators are left associative and are less binding than monadic operators.
el+e2 Integer addition.
el-e2 Integer subtraction.
el*e2 Integer multiplication.
e1%e2 Integer division.
el&e2 Bitwise conjunction.
el | e2 Bitwise disjunction.
el#e2 E1 rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs
are available. (The commands ? and / may be followed by *; see ADDRESSES for further details.)

?f Locations starting at address in objfil are printed according to the format /. dot is incre-
mented by the sum of the increments for each format letter.

/f Locations starting at address in corfil are printed according to the format f and dot is
incremented as for ?.

=f The value of address itself is printed in the styles indicated by the format f. (For i for—
mat ? is printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format charac—
ter may be preceded by a decimal integer that is a repeat count for the format character. While
stepping through a format dot is incremented by the amount given for each format letter. If no
format is given then the last format is used. The format letters available are as follows:

[}
[N

Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.
Print 4 bytes in octal.

Print 2 bytes in signed octal.

Print 4 bytes in signed octal.

Print 2 bytes in decimal.

Print 4 bytes in decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print 2 bytes as an unsigned decimal number.

Print 4 bytes as an unsigned decimal number.

Print the 32 bit value as a floating point number.

Print double floating point.

Print the addressed byte in hexadecimal.

Print the addressed byte in octal.

Print the addressed character. (The sign bit is ignored.)

cWomEE MY OO O
= 00 W R DD R BN B BN W N W

Hewlett-Packard -2- July 2, 1985

ADB(1) Series 200 Only ADB(1)

C1 Print the addressed character using the following escape convention. Character
values 000 to 040 are printed as @ followed by the corresponding character in the
range 0100 to 0140. The character @ is printed as @Q. (The sign bit is ignored.)

s n Print the addressed characters until a zero character is reached. N is the length
of the string, including the zero terminator.

S n Print a string using the @ escape convention. = is the length of the string
including its zero terminator.

Y 4 Print 4 bytes in date format (see ctime(3C)).

i n Print as MC68000 instructions. n is the number of bytes occupied by the
instruction.

I n Same as i, except that immediate constants are printed in decimal.

a0 Print the value of dot in symbolic form. Symbols are checked to ensure that they
have an appropriate type as indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 4 Print the addressed value in symbolic form using the same rules for symbol
lookup as a.

t 0 When preceded by an integer tabs to the next appropriate tab stop. For exam-—
ple, 8t moves to the next 8-space tab stop.

r 0 Print a space.

n 0 Print a new-line.

“...” 0 Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.

+ Dot is incremented by 1. Nothing is printed.

- Dot is decremented by 1. Nothing is printed.

new-line
Repeat the previous command with a count of 1. Also can be used to repeat a :s or :c
command.

[2/1 value mask
Words starting at dot are masked with mask and compared with value until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged; otherwise dot is set to the matched location. If mask is
omitted then -1 is used.

[?/]lw value ...
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to the subprocess address space.

[?/]lm b1 el f1[?/]
New values for (b1, el, f1) are recorded. If less than three expressions are given then the
remaining map parameters are left unchanged. If the ? or / is followed by * then the
second segment (b2, e2, f2) of the mapping is changed. If the list is terminated by ? or /
then the file (objfil or corfil respectively) is used for subsequent requests. (So that, for
example, /m? will cause / to refer to objfil.)

>name Dot is assigned to the variable or register named.
! A shell is called to read the rest of the line following !.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.
>f Send output to the file f, which is created if it does not exist.

Hewlett—Packard -3- July 2, 1985

ADB(1)

Series 200 Only ADB(1)

r Print the general registers and the instruction addressed by pe. Dot is set to pc.

b Print all breakpoints and their associated counts and commands.

c C stack backtrace. If address is given then it is taken as the address of the
current frame (instead of a6). If count is given then only the first count frames
are printed.

e The names and values of external variables are printed.

w Set the page width for output to address (default 80).

s Set the limit for symbol matches to address (default 255).

o The default for all integers input is octal.

d The default for all integers input is decimal.

x The default for all integers input is hexadecimal.

q Exit from adb.

v Print all non zero variables in octal.

n Set the number of significant digits for floating point dump to address.

m Print the address map.

new-line
print the process id and register values.

smodifier

Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is executed count-1 times before caus—
ing a stop. Each time the breakpoint is encountered the command ¢ is executed.
If this command sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.

d=x Delete all breakpoints

r Run objfil as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the command.
An argument starting with < or > causes the standard input or output to be
established for the command. All signals are turned on on entry to the subpro-
cess.

e Setup a subprocess as in r; no instructions are executed.

cs The subprocess is continued with signal s (see signal(2)). If address is given then
the subprocess is continued at this address. If no signal is specified then the sig—
nal that caused the subprocess to stop is sent. Breakpoint skipping is the same
as for r.

8s As for ¢ except that the subprocess is single stepped count times.

Ss As for ¢ except that a temporary breakpoint is set at the next instruction. Useful
for stepping across subroutines.

x a [b]...

Execute subroutine a with parameters [b]...

k The current subprocess, if any, is terminated.

VARIABLES

Adb provides a

number of variables. Named variables are set initially by adb but are not used

subsequently. Numbered variables are reserved for communication as follows.

0
1
2

The last value printed.
The last offset part of an instruction source.
The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil does not appear to
be a core file then these values are set from objfil.

Hewlett—Packard

-4- July 2, 1985

ADB(1) Series 200 Only ADB(1)

b The base address of the data segment.

d The data segment size.

e The entry point.

m The “magic” number as defined in magic.h.
s The stack segment size.

t The text segment size.

ADDRESSES
The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (b1, el, f1) and (b2, €2, f2) and the
file address corresponding to a written address is calculated as follows:

If address is greater than or equal to b1 and address is less than el, then
file address=address+f1-b1

Otherwise,

if address is greater than or equal to b2 and address is less than e2, then
file address=address+f2-b2

Otherwise, the requested address is not legal. If a ? or / is followed by an * then only the second
triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is
not of the kind expected then, for that file, b1 is set to 0, el is set to the maximum file size and f1
is set to 0; in this way the whole file can be examined with no address translation.

In order for adb to be used on large files, all appropriate values are kept as signed 32 bit integers.
FILES

/dev/mem

/dev/swap

a.out

core

SEE ALSO
ptrace(2), a.out(5), core(5).

DIAGNOSTICS
*“Adb’’ when there is no current command or format, and comments about inaccessible files, syn—
tax errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed
or returned non-zero status.

BUGS
Local variables whose names are the same as an external variable may foul up the accessing of the
external.

Hewlett-Packard -5- July 2, 1985

ADJUST(1) ADJUST(1)

NAME

adjust - simple text formatter

SYNOPSIS

adjust [-bejr | [-m column | | -t tabsize | [files... |

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: HP

DESCRIPTION

This command is a simple text formatter for filling, centering, left— and right—justifying, or right—
justifying text paragraphs, designed for interactive use. It reads the concatenation of input files
(or standard input if none are given) and produces on standard output a formatted version of its
input, with each paragraph formatted separately. If “-” is given as an input filename, adjust

reads standard input at that point. (You can use “—” as an argument to separate "—" from
options.) '

Adjust reads text from input lines as a series of words separated by blanks, tabs, or newlines.
Text lines are grouped into paragraphs separated by blank lines. By default, text is carried over
to the output subject only to simple filling (see below), with a right margin of 72, and with lead-
ing blanks converted to tabs where possible.

Options are:

-b Do not convert leading blanks to tabs on output. Thus there are no tabs in the output.
-c Center text on each line. Lines are pre- and post—-processed, but no filling is done.
-j Justify text. After filling, insert blanks in each line (except the last line of each para-

graph) as needed to right—justify, while keeping the justified left margin.

-r After filling text, adjust the indentation of each line for a smooth right margin (ragged
left margin).

-m column
Set the right fill margin to the given column number, instead of 72. Text is filled, and
optionally right-justified, so that no output line extends beyond this column (if possible).
If -mO is given, the current right margin of the first line of each paragraph is used for
that and all subsequent lines in the paragraph.

By default, text is centered on column 40. With -c, the -m option sets the middle
column of the centering “window”, but -m0 auto-sets the right side as before (which then
determines the center of the “window”).

-t tabsize
Set the tab size to other than the default (eight columns).

Only one of the -¢, -j, and -r options is allowed at once.

Details

Before doing anything else to a line of input text, adjust first handles backspaces, rubbing out
preceding characters in the usual way. Next it ignores all non-printable characters except tab.
Then it expands all tabs to blanks.

For simple text filling, the first word of the first line of each paragraph is indented the same
amount as in the input line. Each word is then carried to the output followed by one blank.
“"Words” ending in <terminal>[<quote>][<close>] are followed by two blanks, where <terminal>
is any of ".:7!”, <quote> is a single or double quote, and <close> is any of ”)]}", e.g.:

end. of? sentence.’ sorts!” of.) words?”]

Hewlett-Packard -1- July 2, 1985

ADJUST(1) ADJUST (1)

The program starts a new output line whenever adding a word (other than the first one) to the
current line would pass the right margin.

Adjust understands indented first lines of paragraphs (like this one) when filling. The second
and subsequent lines of each paragraph are indented the same amount as the second line of the
paragraph in the input, if there is a second line; otherwise they are indented the same as the first
line.

* Adjust has a rudimentary understanding of tagged paragraphs (like this one) when
filling. If the second line of a paragraph is indented more than the first, and the first line
has a word beginning at the same indentation as the second line, then the column posi-
tions of the tag words (before that one) are “frozen” (not altered).

Tag words are passed through without change of column position, even if they extend beyond the
right margin. The rest of the line is filled or right-justified from the position of the first non-tag
word.

When -j is given, adjust uses an intelligent algorithm to insert blanks in output lines where they
are most needed, until the lines extend to the right margin. First, all one-blank word separators
are examined. One blank is added first to those separators with the most total letters in the
words on both sides. If all one-blank separators are increased to two blanks, and more blanks
must be inserted, it repeats the algorithm, this time with two-blank separators, and so on.

Output line indentation is held to one less than the right margin. If a single word is larger than
the line size (right margin minus indentation), that word appears on a line by itself, properly
indented, and extends beyond the right margin. However, if -r is used, such words are still
right—justified, if possible.

EXAMPLES

This command is useful for filtering text while in vi(1). For example,

1}adjust
reformats the rest of the current paragraph (from the current line down), evening the lines.
You can give the vi command:

:map "X {!}adjust -j"V"M

nan

(where denotes control characters) to set up a useful “finger macro”. Then typing "X will
reformat the entire current paragraph.

Note that adjust —m1 is a simple way to break text into separate words, without white space,
except for tagged-paragraphs tags.

SEE ALSO

nroff(1)

DIAGNOSTICS

BUGS

Adjust complains to standard error and later returns a non-zero value if any input file cannot be
opened (it skips the file). It does the same (but quits immediately) if the argument of -m or -t is
out of range, or if the program is improperly invoked.

Input lines longer than BUFSIZ are silently split (before tab expansion) or truncated (afterwards).
Lines too wide to center begin in column 1 (no leading blanks).

This program is designed to be simple and fast. It does not recognize backslash to escape white
space or anything else. It does not recognize tagged paragraphs where the tag is on a line by
itself. It knows that lines end in newline or null, and how to deal with tabs and backspaces, but
it does not do anything special with other characters like form feed (they are just ignored). For
complex operations, the standard text processors are likely to be more appropriate.

Hewlett—Packard -2- July 2, 1985

ADJUST (1) ADJUST (1)

This program could be implemented instead as a set of independent programs, fill, center, and
justify (with -r option). However, this would be much less efficient in actual use, especially given
the program’s special knowledge of tagged paragraphs and last lines of paragraphs.

These options were considered but not added, because the creeping featurism had to stop some-
where, before this program became another nroff{(1):

-h Hyphenate. Allows the program to break and join words at existing hyphens (only).
Words are broken across lines, at single hyphens surrounded by non-whitespace charac—
ters. Likewise, a word ending in a single hyphen, followed by whitespace, followed by a
non-hyphen character, is joined to the next word without whitespace if needed.

-n Nofill. Only allowed with -j or -r, it inhibits filling, i.e. words are not moved from one
line to another. Thus existing text can be left/right or right—justified without being oth—
erwise modified. (Note that -n is always in effect for -c, centering.)

Hewlett—Packard -3- July 2, 1985

ADMIN (1) ADMIN (1)

NAME
admin - create and administer SCCS files

SYNOPSIS
admin [-n] [-iname]] [-rrel] [-t[name]] [-flagflag-val]] [-dflag[flag-val]] [-alogin] [-elogin]
[-m[mrlist]} [-y[comment]] [-h] [-z] files

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

Admin is used to create new SCCS files and change parameters of existing ones. Arguments to
admin, which may appear in any order, consist of keyletter arguments, which begin with -, and
named files (note that SCCS file names must begin with the characters s.). If a named file does
not exist, it is created, and its parameters are initialized according to the specified keyletter argu—
ments. Parameters not initialized by a keyletter argument are assigned a default value. If a
named file does exist, parameters corresponding to specified keyletter arguments are changed, and
other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the path name does not begin with s.)
and unreadable files are silently ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file to be processed. Again, non—
SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be
processed since the effects of the arguments apply independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

-i[name] The name of a file from which the text for a new SCCS file is to be taken.
The text constitutes the first delta of the file (see -r keyletter for delta
numbering scheme). If the i keyletter is used, but the file name is omitted,
the text is obtained by reading the standard input until an end-of-file is
encountered. If this keyletter is omitted, then the SCCS file is created with
an empty initial delta. Only one SCCS file may be created by an admin
command on which the i keyletter is supplied. Using a single admin to
create two or more SCCS files requires that they be created empty (no -i
keyletter). Note that the -i keyletter implies the -n keyletter.

-rrel The release into which the initial delta is inserted. This keyletter may be
used only if the -i keyletter is also used. If the -r keyletter is not used, the
initial delta is inserted into release 1. The level of the initial delta is
always 1 (by default initial deltas are named 1.1).

-t[name] The name of a file from which descriptive text for the SCCS file is to be
taken. If the -t keyletter is used and admin is creating a new SCCS file
(the -n and/or -i keyletters also used), the descriptive text file name must
also be supplied. In the case of existing SCCS files: (1) a -t keyletter
without a file name causes removal of descriptive text (if any) currently in
the SCCS file, and (2) a -t keyletter with a file name causes text (if any) in
the named file to replace the descriptive text (if any) currently in the SCCS
file.

-fflag This keyletter specifies a flag, and, possibly, a value for the flag, to be
placed in the SCCS file. Several f keyletters may be supplied on a single
admin command line. The allowable flags and their values are:

Hewlett-Packard -1- July 2, 1985

ADMIN (1)

-dflag

Hewlett-Packard

cceil

ffloor

dsIp
i[str]

Llist

qtext

mmod

tiype

v[pgm]

ADMIN (1)

Allows use of the -b keyletter on a get(1) command to create branch del-
tas.

The highest release (i.e., “ceiling’’), a number less than or equal to 9999,
which may be retrieved by a get(1) command for editing. The default
value for an unspecified ¢ flag is 9999.

The lowest release (i.e., “floor”), a number greater than 0 but less than
9999, which may be retrieved by a get(1) command for editing. The
default value for an unspecified f flag is 1.

The default delta number (SID) to be used by a get(1) command.

Causes the “"No id keywords (cm?7)” message issued by get(1) or delta(1) to
be treated as a fatal error. In the absence of this flag, the message is only
a warning. The message is issued if no SCCS identification keywords (see
get(1)) are found in the text retrieved or stored in the SCCS file. If a value
is supplied, the keywords must exactly match the given string, however the
string must contain a keyword, and no embedded newlines.

Allows concurrent get(1) commands for editing on the same SID of an SCCS
file. This allows multiple concurrent updates to the same version of the
SCCS file.

A list of releases to which deltas can no longer be made (get -e against one
of these “locked” releases fails). The list has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= RELEASE NUMBER | a

The character a in the list is equivalent to specifying all releases for the
named SCCS file. Omitting any list is equivalent to a.

Causes delta(1) to create a “null” delta in each of those releases (if any)
being skipped when a delta is made in a new release (e.g., in making delta
5.1 after delta 2.7, releases 3 and 4 are skipped). These null deltas serve as
“anchor points” so that branch deltas may later be created from them.
The absence of this flag causes skipped releases to be non-existent in the
SCCS file, preventing branch deltas from being created from them in the
future.

User definable text substituted for all occurrences of the %Q% keyword in
SCCS file text retrieved by get(1).

Module name of the SCCS file substituted for all occurrences of the %M%
keyword in SCCS file text retrieved by get(1). If the m flag is not specified,
the value assigned is the name of the SCCS file with the leading s. removed.

Type of module in the SCCS file substituted for all occurrences of %Y%
keyword in SCCS file text retrieved by get(1).

Causes delta(1) to prompt for Modification Request (MR) numbers as the
reason for creating a delta. The optional value specifies the name of an MR
number validity checking program (see delta(1)). (If this flag is set when
creating an SCCS file, the m keyletter must also be used even if its value is
null).

Causes removal (deletion) of the specified flag from an SCCS file. The -d
keyletter may be specified only when processing existing SCCS files. Several
-d keyletters may be supplied on a single admin command. See the -f
keyletter for allowable flag names.

g July 2, 1985

ADMIN (1) ADMIN (1)

FILES

1list A list of releases to be “unlocked”. See the -f keyletter for a description of
the 1 flag and the syntax of a list.

-alogin A login name, or numerical HP-UX group ID, to be added to the list of
users which may make deltas (changes) to the SCCS file. A group ID is
equivalent to specifying all login names common to that group ID. Several
a keyletters may be used on a single admin command line. As many
logins, or numerical group IDs, as desired may be on the list simultane-
ously. If the list of users is empty, then anyone may add deltas. If login or
group ID is preceded by a ! they are to be denied permission to make del-
tas.

-elogin A login name, or numerical group ID, to be erased from the list of users
allowed to make deltas (changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to that group ID. Several
e keyletters may be used on a single admin command line.

-y[comment] The comment text is inserted into the SCCS file as a comment for the ini-
tial delta in a manner identical to that of delta(1l). Omission of the -y
keyletter results in a default comment line being inserted in the form:

date and time created YY/MM/DD HH:MM:SS by login

The -y keyletter is valid only if the -i and/or -n keyletters are specified
(i.e., a new SCCS file is being created).

-m(mrlist) The list of Modification Requests (MR) numbers is inserted into the SCCS
file as the reason for creating the initial delta in a manner identical to
delta(1). The v flag must be set and the MR numbers are validated if the
v flag has a value (the name of an MR number validation program). Diag-
nostics will occur if the v flag is not set or MR validation fails.

-h Causes admin to check the structure of the SCCS file (see scesfile(5)), and
to compare a newly computed check-sum (the sum of all the characters in
the SCCS file except those in the first line) with the check-sum that is
‘stored in the first line of the SCCS file. Appropriate error diagnostics are
produced.

This keyletter inhibits writing on the file, so that it nullifies the effect of
any other keyletters supplied, and is, therefore, only meaningful when pro-
cessing existing files.

-z The SCCS file check-sum is recomputed and stored in the first line of the
SCCS file (see -h, above).

Note that use of this keyletter on a truly corrupted file may prevent future
detection of the corruption.

The last component of all SCCS file names must be of the form s.file-name. New SCCS files are
given mode 444 (see chmod(1)). Write permission in the pertinent directory is, of course, required
to create a file. All writing done by admin is to a temporary x-file, called x.file-name, (see
get(1)), created with mode 444 if the admin command is creating a new SCCS file, or with the
same mode as the SCCS file if it exists. After successful execution of admin, the SCCS file is
removed (if it exists), and the x-file is renamed with the name of the SCCS file. This ensures that
changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files them—
selves be mode 444. The mode of the directories allows only the owner to modify SCCS files con-
tained in the directories. The mode of the SCCS files prevents any modification at all except by
SCCS commands.

Hewlett-Packard -3- July 2, 1985

ADMIN (1) ADMIN (1)

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644 by
the owner allowing use of ed(1). Care must be taken! The edited file should always be processed
by an admin -h to check for corruption followed by an admin -z to generate a proper check—
sum. Another admin -h is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is used to prevent simul-
taneous updates to the SCCS file by different users. See get(1) for further information.
SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what(1), scesfile(5).
SCCS User’s Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS
Use help(1) for explanations.

Hewlett—Packard -4- July 2, 1985

AR(1)

NAME

AR (1)

ar - archive and library maintainer for portable archives

SYNOPSIS

ar key [posname | afile [name] ...

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the link editor. It can be used, though, for any similar purpose.
The magic string and the file headers used by ar consist of printable ASCII characters. If an
archive is composed of printable files, the entire archive is printable.

Individual files are inserted without conversion into the archive file. When ar creates an archive,
it creates headers in a format that is portable across all machines. The portable archive format
and structure is described in detail in ar(4). The archive symbol table (described in ar(4)) is used
by the link editor (Id(1)) to effect multiple passes over libraries of object files in an efficient
manner. An archive symbol table is only created and maintained by ar when there is at least one
object file in the archive. The archive symbol table is in a specially named file which is always the
first file in the archive. This file is never mentioned or accessible to the user. Whenever the ar(1)
command is used to create or update the contents of such an archive, the symbol table is rebuilt.
The s option described below will force the symbol table to be rebuilt.

Key must be present, and is an optional -, followed by one character from the set drqtpmx,
optionally concatenated with one or more of vuaibcels. Afile is the archive file. The names are
constituent files in the archive file. The meanings of the key characters for operations on an
archive are:

d Delete the named files from the archive file.

r Replace the named files, or add a new file to the archive. If the optional character u is used
1 with r, then only those files with dates of modification later than the archive files are
replaced. If an optional positioning character from the set abi is used, then the posname
argument must be present and specifies that new copies of the named files are to be placed
after (a) or before (b or i) posname. In the absence of a positioning character, new files are
placed at the end. Ar will create afile if it does not already exist. If there are no file names,

ar will create an empty archive file whose only contents is the archive header (see ar(5)).

q Quickly append the named files to the end of the archive file. Optional positioning characters
are invalid. The command does not check whether the added members are already in the
archive. This is useful only to avoid quadratic behavior when creating a large archive piece-

., by-piece. Ar will create afile if it does not already exist.

t Print a table of contents of the archive file. If no names are given, all files in the archive are
described. If names are given, information about only those files appears.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present, then the
posname argument must be present and, as in r, specifies where the files are to be moved.
Note that, when used with a positioning character, the files are moved in the same order that
they currently appear in the archive, not in the order specified on the command line. See
EXAMPLES.

x Extract the named files. If no names are given, all files in the archive are extracted. In nei-
ther case does x alter (i.c. delete entries from) the archive file.

Hewlett—Packard -1- July 2, 1985

AR(1) AR(1)

The meanings of the remaining optional modifying characters are:

v Verbose. Give a verbose file-by-file description of the making of a new archive file from
the old archive and the constituent files. When used with t, it gives a long listing of all
information about the files. When used with the d, m, p, q, and x options, the verbose
option causes ar to print the key letter and file name associated with each file for that
operation. For the r operation, ar will show an "a” if it added a new file, or an “r” if it
replaced an existing one.

c Create. Normally ar will create afile when it needs to (for the r and q operations). The
create option suppresses the normal message that is produced when afile is created.

1 Local. Place temporary files in the local current working directory, rather than in the
directory specified by the environment variable TMPDIR or in the default directory
/tmp. Only the d, m, r and s options use temporary files.

] Force the regeneration of the archive symbol table even if ar(1) is not invoked with a
command which will modify the archive contents. This command is useful to restore the
archive symbol table after the strip(1) command has been used on the archive.

Only the following combinations are meaningful:
d: v,l

u,v,c,l,andal b li

v, c

v, 8

v, 8
: v,landa | b|1i

v, 8
For other combinations of modifiers with operations not shown in the
above table, the modifier has no effect.

%E9 e

EXAMPLES
The command

ar r newlib.a f3 2 f1 f4

will create a new file (if one does not already exist) in archive format with its constituents entered
in the order shown in the above command line.

If you want to replace files f2 and {3 such that the new copies follow file f1, the commands

ar ma f2 newlib.a 3
ar ma fl newlib.a f2 f3
ar r newlib.a f2 f3

will produce the desired effect. The archive will now be ordered
newlib.a: f1 27 3 f4

where the single quote marks indicate updated files.

FILES

/tmp/ar temporaries
SEE ALSO

arcv(1), 1d(1), lorder(1), strip(1). tmpnam(3S), a.out(5), ar(5), ranlib(5).
WARNING

If you are the super—user, ar will alter any archive file, even if it is write-protected.
NOTES

This archive format is new to this release. The arcv(1) command can be used to change an older
archive file into an archive file that is recognized by this ar command.

Hewlett—Packard -2- July 2, 1985

S~

AR(1) AR (1)

BUGS
If the same file is mentioned twice in an argument list, it may be put in the archive twice.

Ar reports cannot create file.a, where file.a is an ar-format archive file, even if file.a already
exists. This message is triggered when file.a is write-protected or inaccessible.

Hewlett—Packard -3- July 2, 1985

ARCV (1)

NAME
arcv - convert archives to new format

SYNOPSIS
arcv file ...

HP-UX COMPATIBILTY
Level: HP-UX/STANDARD

Origin: UCB
DESCRIPTION

ARCV (1)

Arcv converts archive files (see ar(1), and ar(5)) from a pre-HP-UX 5.0 format to the HP-UX 5.0
portable archive format. The conversion is done in place, and the command refuses to alter a file

not in old archive format.

Old archives are marked with a magic number of 0177545 at the start; new archives have a first

line “!I<arch>".

FILES
/tmp/arcx

SEE ALSO
ar(1), ar(5).

Hewlett-Packard

July 2, 1985

AS(1) Series 200 Only

NAME
as - assembler for MC68000

SYNOPSIS
as [-A]| [-a afile] [-0 objfile | [file]

HP-UX COMPATIBILITY
Level: HP-UX/DEVELOPPMENT

Origin: System III

Remarks: As is implemented on the Series 200 only.

DESCRIPTION

AS(1)

As assembles the named file, or the standard input if no file name is specified. The optional
arguments -A or -a may be used to obtain an assembly listing with offsets and instruction codes
listed in hex. If -A is used the listing goes to standard output. If -a is used the listing goes to

afile.

All undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, .s is stripped from the end
of the file name (if there) and .o is appended to it. This becomes the name of the output file. As

does not invoke /d.

FILES
/usr/tmp/* temporary files
file.o object file
SEE ALSO
adb(1), 1d(1), nm(1), a.out(5).
MC68000 Assembler on HP-UX, in HP-UX Concepts and Tutorials.
DIAGNOSTICS
If the name chosen for the output file is of the form *.[cs], the assembler issues an appropriate
complaint and quits. When syntactic or semantic errors occur, a single-line diagnostic is typed
out together with the line number and the file name in which it occurred.
Hewlett-Packard -1-

July 9, 1985

ASA(1)

NAME

ASA(1)

asa - interpret ASA carriage control characters

SYNOPSIS

HP-UX

asa [files]

COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System V

DESCRIPTION

Asa interprets the output of FORTRAN programs that utilize ASA carriage control characters. It
processes either the files whose names are given as arguments or the standard input if no file
names are supplied. The first character of each line is assumed to be a control character; their
meanings are:

[N (blank) single new line before printing
0 double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they began with 7 r. The
first character of a line is not printed. If any such lines appear, an appropriate diagnostic will
appear on standard error. This program forces the first line of each input file to start on a new
page.

To view correctly the output of FORTRAN programs which use ASA carriage control characters,
asa could be used as a filter thus:

a.out | asa | Ip

and the output, properly formatted and paginated, would be directed to the line printer. FOR-
TRAN output sent to a file could be viewed by:

asa file

SEE ALSO

Hewlett

efl(1), f77(1), fsplit(1), ratfor(1).

—Packard -1- July 2, 1985

AT(1)

at, batch - execute commands at a later time

SYNOPSIS

at time [date | [+ increment |
at -rjob...
at -l[job...]

batch

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral Personal Computer.

Native Language Support:
8-bit filenames.

DESCRIPTION

At and batch read commands from standard input to be executed at a later time. At allows you
to specify when the commands should be executed, while jobs queued with batch will execute
when system load level permits. At —r removes jobs previously scheduled with at. The -1 option
reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they are redirected else—
where. The shell environment variables, current directory, umask, and ulimit are retained when
the commands are executed. Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file /usr/lib/cron/at.allow. If that
file does not exist, the file /usr/lib/cron/at.deny is checked to determine if the user should be
denied access to at. If neither file exists, only root is allowed to submit a job. If either file is
at.deny, global usage is permitted. The allow/deny files consist of one user name per line.

The time may be specified as 1, 2, or 4 digits. One and two digit numbers are taken to be hours,
four digits to be hours and minutes. The time may alternately be specified as two numbers
separated by a colon, meaning hour:minute. A suffix am or pm may be appended; otherwise a
24-hour clock time is understood. The suffix zulu may be used to indicate GMT. The special
names noon, midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a day number (and possi—

_bly year number preceded by an optional comma) or a day of the week (fully spelled or abbrevi-
ated to three characters). Two special “days”, today and tomorrow are recognized. If no date
is given, today is assumed if the given hour is greater than the current hour and tomorrow is
assumed if it is less. If the given month is less than the current month (and no year is given),
next year is assumed.

The optional increment is simply a number suffixed by one of the following: minutes, hours,
days, weeks, months, or years. (The singular form is also accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to standard error.

Batch submits a batch job. It is almost equivalent to ‘“at now”, but not quite. For one, it goes
into a different queue. For another, “at now’’ will respond with the error message too late.

Hewlett—Packard -1- July 2, 1985

AT(1) AT(1)

At —r removes jobs previously scheduled by at or batch. The job number is the number given to
you previously by the at or batch command. You can also get job numbers by typing at -1. You
can only remove your own jobs unless you are the super—user.

EXAMPLES
The at and batch commands read from standard input the commands to be executed at a later
time. Sh(1) provides different ways of specifying standard input. Within your commands, it may
be useful to redirect standard output.

This sequence can be used at a terminal:
batch
nroff filename >outfile
<control-D> (hold down ’control’ and depress 'D’)

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a shell pro-
cedure (the sequence of output redirection specifications is significant):
batch <<!

nroff filename 2>&1 >outfile | mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by including code simi-
lar to the following within the shell file:
echo "sh shellfile” | at 1900 thursday next week

FILES
/Jusr/lib/cron — main cron directory
/usr/lib/cron/at.allow - list of allowed users
/usr/lib/cron/at.deny — list of denied users
/Jusr/lib/cron/queue — scheduling information
/usr/spool/cron/atjobs — spool area

SEE ALSO
crontab(1), kill(1), mail(1), nice(1), ps(1), sh(1), cron(1M).

DIAGNOSTICS

Complains about various syntax errors and times out of range.

Hewlett—Packard -2- July 2, 1985

ATERM (1C) Series 500 Only ATERM(1C)

NAME

aterm - general purpose asynchronous terminal emulation
SYNOPSIS

aterm configfile

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP
Native Language Support:
8-bit data.
Remarks: Aterm is implemented on the Series 500 only.
DESCRIPTION

Aterm is a general purpose asynchronous terminal emulator designed for maximum connection
flexibility and simple file transfers without remote host support. Transparent pass-through mode
provides all user terminal capabilities in multi-user systems.

Configfile is used by aterm to match the particular terminal configuration needed for the remote
system you are logging onto. This file consists of configuration commands, one to a line. Each
line consists of the command name and its arguments, if any. Only configuration parameters
which differ from the standard default need be specified. Most configuration commands can also
be given from the keyboard while the emulator is running. You can exit aterm by typing “~.".

The following list shows the recognized configuration command names:

da Serial device file name (no default);

hn Name of remote computer system (no default);

db Number of data bits per character: 5, 6, 7, or 8 (default = 7);

sb Number of stop bits per character: 1, 1.5, or 2 (default = 1);

pa Character parity: none (n), odd (o), even (e), zero (0), or one (1) (default = o);

dr Rate for data sent and received: 50, 75, 110, 134.5, 150, 300, 600, 1200, 1800, 2400, 3600,
4800, 9600, or 19200 baud (default = 2400 baud);

mc Modem control: enabled (+) for full-duplex modem, or disabled (-) for full-duplex
hard-wired connection (default = -);

ss Switched service: auto—-answer (a) or manual originate (o) (default = o);

ga Gap: number of character transmission times to delay between successive output charac—
ters; values range from 0 to 254 (default = 0);

ec Echo: enabled (+) if the host computer echos characters sent by the emulator, disabled

(-) otherwise (default = -);

te Terminal ENQ/ACK: enabled (+) or disabled (-) (default = +);

he Host ENQ/ACK: enabled (+) or disabled (-) (default = -);

tx Terminal XON/XOFF: enabled (+) or disabled (-) (default = -);

hx Host XON/XOFF: enabled (+) or disabled (-) (default = -);

im Input mode: block (b), character (c), or line (1) (default = b);

om Output mode: character (c) or line (1) (default = c);

ph Prompt handshake: if enabled (+), the emulator waits for the prompt sequence before
sending each line of data during an input diversion; if disabled (-), no wait is performed
(default = -);

pt Prompt timeout: number of seconds to allow for receipt of a prompt sequence during an
input diversion; values range from 1 to 600, with 0 disabling the timeout altogether
(default = 0);

st Single text terminators: list of characters, any of which terminates a line sent by the host
computer when the emulator is in input line mode; up to eight characters may be
specified (default = no characters);

Hewlett—Packard -1- July 9, 1985

ATERM (1C)

dt

ps

bl
el

es

Series 500 Only ATERM(1C)

Double text terminator: a pair of characters which together terminate a line sent by the
host computer when the emulator is in input line mode (default = carriage-return/line-
feed);

Prompt sequence: one or two characters which terminate a line sent by the host com-
puter when the emulator is in input line mode, and which satisfy the prompt handshake if
enabled (default = DCL);

Beginning of line: character to be prefixed to each line sent to the host computer (default
= none);

End of line: one or two characters to be postfixed to each line sent to the host computer
(default = carriage-return);

Local command character: character which designates a local command to be interpreted
by the emulator if it comes at the beginning of a line read from the standard input
(default = 7).

Note that emulation does not include block or format modes.

SEE ALSO
cu(1C)

if simple connections are adequate or if you are calling another HP-UX system;

uucp(1C) for file transfers with other HP-UX systems.
HP-UX Network Communications Guide.

BUGS

Does not work with 6-channel multiplexer.

Hewlett-Packard . -2- July 9, 1985

ATRANS(1) Beries 200 Only ATRANS (1)

atrans - translate assembly language

SYNOPSIS

atrans [-j] [-n] [filename]

HP-UX COMPATIBILITY

Level: HP-UX/DEVELOPMENT
Origin: HP
Remarks: Atrans is implemented on the Series 200 and Integral PC only.

DESCRIPTION

Atrans translates an assembly language source file from Series 200 Pascal workstation assembly
language syntax to Series 200 HP-UX assembly language syntax. If no filename is given, input
is assumed to come from stdin.

All uppercase characters are converted to lowercase characters, except those in comments or in
quoted strings.

Hexadecimal constants are converted from Series 200 Pascal workstation syntax,
£<hez number> to the Series 200 HP-UX syntax, Oz<hez number>.

Operands whose effective address is program counter with displacement will have the string pc
inserted in them (e.g. 8(d6) will become 8(pc,d6)).

Lines containing the following list of Series 200 Pascal workstation pseudo-ops have no parallel
in Series 200 HP-UX syntax and are translated as comment lines: decimal, end, llen, list, lprint,
nolist, noobj, nosyms, page, spc, sprint, ttl.

Lines containing the mname or src pseudo-ops are translated as comment lines, and a warning is
printed stating that modules are not supported by the Series 200 HP-UX assembler.

The pseudo-ops, def, refa, and refr, are translated as globl.
The file name operand of an include pseudo-op will have quote marks put around it.

Certain pseudo-ops require manual intervention to translate. Each Line containing these
pseudo_ops will cause a message to be printed stating that an error will be generated by the
Series 200 HP-UX assembler. These pseudo-ops are: com, lmode, org, rorg, rmode, smode,
start.

The -j option converts opcodes with the bee[.s].1] branch syntax to the jec syntax. It also con—
verts bsr[.sl.l] to jbsr.

The -n option converts groups of blanks to tabs.

SEE ALSO

as(1).

Hewlett-Packard -1-) July 2, 1985

AWK(1) AWK(1)

NAME
awk — text pattern scanning and processing language

SYNOPSIS
awk [-F c] [-f file | prog] [parameters | [files]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a file
matches the pattern. The set of patterns may appear literally as prog, or in a file specified as —f
file. The prog string should be enclosed in single quotes () to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file name — means the
standard input. Each line is matched against the pattern portion of every pattern-action state-
ment; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS; see below). The fields are denoted $1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a sequence
of statements. A statement can be one of the following:

if (conditional) statement [else statement |

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print | expression-list | [>expression]

printf format [, expression-list | [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, —, #, /, %, and concatenation (indicated by a blank). The C opera-
tors ++, —, +=, —=, *=, /=, and %= are also available in expressions. Variables may be
scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null string. Array
subscripts may be any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted (”). Single quotes (’) are not recognized.

The print statement prints its arguments on the standard output (or on a file if >ezpr is present),
separated by the current output field separator, and terminated by the output record separator.
The printf statement formats its expression list according to the format (see printf(3S)).

The built-in function length returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions ezp, log, sqrt, and int. The last truncates
its argument to an integer; substr(s, m, n) returns the n-character substring of s that begins at
position m. The function sprintf(fmt, ezpr, expr, ...) formats the expressions according to the
printf(3S) format given by fmt and returns the resulting string.

Hewlett-Packard -1- November 19, 1985

AWK (1) AWK (1)

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as in
egrep (see grep(1)). Isolated regular expressions in a pattern apply to the entire line. Regular
expressions may also occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines between an occurrence of
the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a 'matchop is either ~ (for contains)
or !” (for does not contain). A conditional is an arithmetic expression, a relational expression, or
a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is
read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with:
BEGIN { FS = ¢ }
or by using the —F ¢ option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current input
file; OFS, the output field separator (default blank); ORS, the output record separator (default
new-line); and OFMT, the output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s+=81}
END { print “sum is”, s, “ average is”, s/NR }

Print fields in reverse order:
{ for (i = NF; i > 0; —i) print §i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

Hewlett-Packard -2- November 19, 1985

AWK (1) AWK (1)

command line: awk —f program n=>5 input

SEE ALSO
grep(1), lex(1), sed(1), malloc(3x).
Awk: A Programming Language for Manipulating Data in HP-UX Concepts and Tutorials.

BUGS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add 0 to it; to force it to be treated as a string concatenate the null string
(") to it.

Hewlett-Packard -3- November 19, 1985

BANNER (1) BANNER (1)

NAME
banner - make posters in large letters

SYNOPSIS
banner strings

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
Banner prints its arguments (each up to 10 characters long) in large letters on the standard out-
put.

Each argument is on a separate line.

SEE ALSO
echo(1).

Hewlett-Packard -1- July 2, 1985

BASENAME (1) BASENAME (1)

ad.b

NAME
basename, dirname — extract portions of path names

SYNOPSIS
basename string [suffix]
dirname string

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V
Native Language Support:
8-bit filenames.

DESCRIPTION
Basename deletes any prefix ending in / and the suffiz (if present in string) from string, and
prints the result on the standard output. It is normally used inside command substitution marks
(*...") within shell procedures. If string does not contain the indicated suffix, basename returns an
unpredictable value consisting either of a single character string, or the null string.

Dirname delivers all but the last level of the path name in string. If string is null or does not
contain a directory component, dirname returns “.”, indicating the current working directory.

EXAMPLES
The following shell script, invoked with the argument /usr/src/cmd/cat.c, compiles the named
file and moves the output to a file named cat in the current directory:

ce $1
mv a.out ‘basename $1 .c

The following example will set the shell variable NAME to /usr/src/cmd:
NAME="‘dirname /usr/src/cmd/cat.c’

RETURN VALUE
Both commands return 0 for success, 1 for failure. Dirname always succeeds, and thus always
returns 0.

SEE ALSO
expr(1), sh(1).

BUGS
When using basename, be aware that suffixes are not guaranteed to occur at the end of the string.
Thus,

basename file.c.old .c

returns “file”.

Hewlett-Packard -1- November 18, 1985

~_

BC(1) BC(1)

NAME

be - arbitrary-precision arithmetic language
SYNOPSIS

be [-c][-1]][file..]
HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: System V
Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION
Bc is an interactive processor for a language that resembles C but provides unlimited precision
arithmetic. It takes input from any files given, then reads the standard input. The options are as
follows:

-c compile only. Bc is actually a preprocessor for dc(1), which bc invokes automatically.
Specifying -¢ prohibits invocation of de¢, and sends the dec input to the standard output.

-1 causes an arbitrary precision math library to be pre-defined.
The syntax for bc programs is as follows;

L means a letter in the range a-z;
E means expression;

S means statement;

R means relational expression.

Comments
are enclosed in /# and */.

Names
simple variables: L
array elements: L [E |
The words ‘“‘ibase’, ‘“‘obase’’, and “‘scale”
stacks: L

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)

sqrt (E)

length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)

Strings of ASCII characters enclosed in quotes (”).

Arithmetic operators (yield an E as a result)

+-%/ %" (% is remainder; " is power)
++ -- (prefix and postfix; apply to names)
= = =- =% = / =% ="

Relational operators (yield an R when used as E op E).
== <=>=1=< >

Statements

E

{S;..;S}
if(R)S

while (R) S
for (E;R;E)S
null statement

Hewlett-Packard -1- ‘ July 2, 1985

BC(1) BC(1)

break
quit
Function definitions
defineL (L ,...,L)
auto L, ...,
S; ... S
return (E)

{
L

Functions in the -1 math library:

s(x) sine

c(x) cosine

e(x) exponential

1 (X) log

a(x) arctangent
i(@x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign—
ment. No operators are defined for strings, but the string is printed if it appears in a context
where an expression result would be printed. Either semicolons or new-lines may separate state—
ments. Assignment to scale influences the number of digits to be retained on arithmetic opera—
tions in the manner of d¢(1). Assignments to ibase or obase set the input and output number
radix respectively, again as defined by de(1).

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. ‘“Auto” variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables, empty square
brackets must follow the array name.

EXAMPLE
scale = 20
define e(x){
auto a, b, ¢, i, s
a=1
b=1
s=1
for(i=1; 1==1; i++){
a = a*x
c=a/b
if(c == 0) return(s)
s = s+c¢
}
}

defines a function to compute an approximate value of the exponential function, and
for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

FILES
/usr/lib/lib.b mathematical library
/usr/bin/de desk calculator proper
SEE ALSO

bs(1), de(1).

Hewlett-Packard -2- July 2, 1985

BC(1) BG(1)

BUGS
There are currently no && (AND) or || (OR) comparisons.
The for statement must have all three expressions.
Quit is interpreted when read, not when executed.
Bc’s parser is not robust in the face of input errors. Some simple expression like 2+2 will tend to
get it back into phase.

Hewlett—Packard -3- July 2, 1985

BDIFF (1) BDIFF (1)

NAME

bdiff - big diff

SYNOPSIS

bdiff filel file2 [n] [-s]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff(1) to find which lines must be changed in two files to
bring them into agreement. Its purpose is to allow processing of files which are too large for diff.
Bdiff ignores lines common to the beginning of both files, splits the remainder of each file into n—
line segments, and invokes diff upon corresponding segments. The value of n is 3500 by default.
If the optional third argument is given, and it is numeric, it is used as the value for n. This is
useful in those cases in which 3500-line segments are too large for diff, causing it to fail. If filel
(file2) is -, the standard input is read. The optional -s (silent) argument specifies that no diag-
nostics are to be printed by bdiff (note, however, that this does not suppress possible exclamations
by diff). If both optional arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for the segment—
ing of the files (that is, to make it look as if the files had been processed whole). Note that
because of the segmenting of the files, bdiff does not necessarily find a smallest sufficient set of file
differences.

SEE ALSO

diff(1).

DIAGNOSTICS

Use help(1) for explanations.

Hewlett-Packard -1- July 2, 1985

BFS(1) BFS(1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [- | name

HP-UX COMPATIBILITY
Level: HP-UX STANDARD

Origin: System V

DESCRIPTION
The Bfs command is (almost) like ed(1) except that it is read-only and processes much larger
files. Files can be up to 1024K bytes (the maximum possible size) and 32K lines, with up to 512
characters, including new-line, per line (255 for 16-bit machines). Bfs is usually more efficient
than ed for scanning a file, since the file is not copied to a buffer. It is most useful for identifying
sections of a large file where csplit(1) can be used to divide it into more manageable pieces for
editing.

Normally, the size of the file being scanned is printed, as is the size of any file written with the w
command. The optional - suppresses printing of sizes. Input is prompted with * if P and a car-
riage return are typed as in ed. Prompting can be turned off again by inputting another P and
carriage return. Note that messages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular expressions may be
surrounded with two symbols besides / and ?: > indicates downward search without wrap—
around, and < indicates upward search without wrap-around. There is a slight difference in mark
names: only the letters a through z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described under ed. Commands such
as ---, +++-, +++=, -12, and +4p are accepted. Note that 1,10p and 1,10 will both print
the first ten lines. The f command only prints the name of the file being scanned; there is no
remembered file name. The w command is independent of output diversion, truncation, or
crunching (see the xo, xt and xc commands, below). The following additional commands are
available:

xf file
Further commands are taken from the named file. When an end-of-file is reached, an
interrupt signal is received or an error occurs, reading resumes with the file containing
the xf. The xf commands may be nested to a depth of 10.

xn List the marks currently in use (marks are set by the k command).
xo | file]
Further output from the p and null commands is diverted to the named file, which, if

necessary, is created mode 666. If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated by new-line, and
blanks between the : and the start of the label are ignored. This command may also
be used to insert comments into a command file, since labels need not be referenced.

(.,.)xb/regular ezxpression/label
A jump (either upward or downward) is made to label if the command succeeds. It
fails under any of the following conditions:

Hewlett-Packard -1- July 2, 1985

BFS(1)

BFS(1)

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression does not match at least one line in the specified
range, including the first and last lines.

On success, . is set to the line matched and a jump is made to label. This command is
the only one that does not issue an error message on bad addresses, so it may be used
to test whether addresses are bad before other commands are executed. Note that the
command

xb/"/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other than a terminal. If
it is read from a pipe only a downward jump is possible.

xt number

Output from the p and null commands is truncated to at most number characters.
The initial number is 255.

xv|digit] [spaces] [value]

Hewlett—Packard

The variable name is the specified digit following the xv. The commands xv5100 or
xv5 100 both assign the value 100 to the variable 5. The command Xv61,100p
assigns the value 1,100p to the variable 6. To reference a variable, put a % in front
of the variable name. For example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line containing a match.
To escape the special meaning of %, a \ must precede it.

g/"-*\%[cds]/p

could be used to match and list lines containing printf of characters, decimal integers,
or strings.

Another feature of the xv command is that the first line of output from an HP-UX
system command can be stored into a variable. The only requirement is that the first
character of value be an !. For example:

W junk

xvblcat junk

Irm junk

lecho "%5”

xv6lexpr %6 + 1
would put the current line into variable 5, print it, and increment the variable 6 by
one. To escape the special meaning of ! as the first character of value, precede it with

a\.

xv7\!date

stores the value !date into variable 7.

—2- July 2, 1985

BFS(1) BFB(1)

xbz label

xbn label
These two commands will test the last saved return code from the execution of a HP-
UX system command (!command) for a zero or nonzero value, respectively, and cause
a branch to the specified label. The two examples below both search the file for the
next five lines which contain the string size.

xv55

1

/size/

xvblexpr %5 - 1

lif [%5 1= 0] ; then exit 2 ; fi
xbn 1

xv45

;1
/size/
xv4lexpr %4 - 1
lif (%4 =0] ; then exit 2 ; fi
xbz 1
xc [switch)
If switch is 1, output from the p and null commands is crunched; if switch is 0 it is

not. Without an argument, xc reverses switch. Initially switch is set for no crunching.
Crunched output has strings of tabs and blanks reduced to one blank and blank lines

suppressed.
SEE ALSO
csplit(1), ed(1), regex(3), regemp(3X).
DIAGNOSTICS

? for errors in commands, if prompting is turned off. Self-explanatory error messages when
prompting is on.

BUGS
When searching a file which contains a line that is longer than 512 characters (including the new—

line), a message “line too long — output truncated,” will be printed every time that line is
searched.

Hewlett—Packard -3- July 2, 1985

BIFCHMOD (1) BIFCHMOD (1)

NAME
bifchmod - change mode of a BIF file

SYNOPSIS
bifchmod mode device:file ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP
DESCRIPTION
Bifchmod is intended to mimic chmod(1).

A BIF file name is recognized by the embedded colon (:) delimiter (see bif(5) for BIF file naming
conventions).

The permissions of each named file are changed according to mode, which may be absolute or
symbolic. An absolute mode is an octal number constructed from the OR. of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who | op permission [op permission |
The who part is a combination of the letters u (for user’s permissions), g (group) and o (other).
The letter a stands for ugo, the default if who is omitted.

Op can be + to add permission to the file’s mode, - to take away permission, or = to assign per—
mission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group ID) and t (save text - sticky); u, g or o indicate that permission is to be taken from the
current mode. Omitting permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s is only useful with u or g and t only works with u.

EXAMPLES
The first example denies write permission to others, and the second makes a file executable (using
symbolic mode):

bifchmod o-w file
bifchmod +x file

The next example below assigns read and execute permission to everybody, and sets the set—
user-id bit. The second assigns read and write permission to the file owner, and read permission
to everybody else (using absolute mode):

bifchmod 4555 file
bifchmod 644 file

The following two examples perform the same function, namely to give read, write, and execute
permission to the owner and read and execute permissions to everybody else for the BIF file
/etc/script on /dev/mfd.0:

Hewlett-Packard o-1- July 2, 1985

BIFCHMOD (1) BIFCHMOD (1)

bifchmod a=rx,u+w /dev/mfd.0:/etc/script
bifchmod 755 /dev/mfd.0:/etc/script

SEE ALSO
bif(5), chmod(1), chmod(2).

Hewlett-Packard -2- July 2, 1985

BIFCHOWN (1)

NAME
bifchown, bifchgrp - change file owner or group

SYNOPSIS
bifchown owner device:file ...

bifchgrp group device:file ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP
DESCRIPTION

Bifchown and bifchgrp are intended to mimic chown(1) and chgrp(1).

BIFCHOWN (1)

A BIF file name is recognized by the embedded colon (:) delimiter (see bif(5) for BIF file naming

conventions).

Bifchown changes the owner of the files to owner. The owner may be either a decimal user ID or

a login name found in the password file.

Bifchgrp changes the group ID of the files to group. The group may be either a decimal group ID

or a group name found in the group file.
EXAMPLES

The examples that follow assume that a BIF directory structure exists on the HP-UX device file

/dev/rfd.

The first example sets the owner of the BIF file /users/abc/phone.num to adm:
bifchown adm /dev/rfd:/users/abc/phone.num

The second example sets the group ID of the BIF file /tmp/b.date to the decimal number 105:

bifchgrp 105 /dev/rfd:/tmp/b.date

FILES

/etc/passwd

/etc/group
SEE ALSO

bif(5), chown(1), chgrp(1), group(5), passwd(5).
Hewlett-Packard -1-

July 2, 1985

BIFCP (1) BIFCP (1)

bifep - copy to or from BIF files

SYNOPSIS

bifcp filel file2
bifcp filel [file2...] directory

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: HP

DESCRIPTION

Bifcp is intended to mimic cp(1).

A BIF file name is recognized by the embedded colon (:) delimiter (see bif(5) for BIF file naming
conventions).

Bifcp copies a BIF or HP-UX file to a BIF or HP-UX file, or list of filess (HP-UX or BIF) to a
directory. The last name on the argument list is the destination file or directory.

Note that the media should NOT be mounted before using bifep.

The file name -’ (dash) is interpreted to mean standard input or standard output, depending on
its position in the argument list.

EXAMPLES

bifcp abc /dev/hd.c:x/y/z
copy the HP-UX file abc to the BIF file z/y/z within HP-UX device /dev/hd.c

bifcp /dev/fd.0:/backup/log logcopy
copy BIF file /backup/log within /dev/fd.0 to HP-UX file logcopy within the current direc—
tory.
bifcp /dev/bb:archive —
copy BIF file archive within HP-UX device /dev/bb to standard output.
The following example copies the BIF files /a, /b, and /c to the HP-UX directory /users/dave:
sdfcp /dev/hdl:/a /dev/hdl:/b /dev/hdl:/c /users/dave
The last example shows how you can implement a “cat” program for concatenating BIF files using
bifep in a shell script:
if[$# -1t 1]

then
echo “Usage: bifcat file ...”
exit 1

fi

for i in $*

do
bifep $i —

done

SEE ALSO

bif(5), cp(1).

DIAGNOSTICS

Bifcp returns exit code 0 if the file is copied successfully. Otherwise it prints a diagnostic and
returns non-zero.

The ' (stdio) notation may not work in some situations.

Hewlett—Packard -1- July 2, 1985

BIFDF (1) BIFDF (1)

NAME
bifdf - report number of free disk blocks

SYNOPSIS
bifdf [-t | [-f] [file-systems]
HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: HP
DESCRIPTION
Bifdf prints out the number of free blocks and free i-nodes available for on-line Bell file systems
by examining the counts kept in the super-blocks; file-systems may be specified by device name
(e.g. /dev/rhd).
The -t flag causes the total allocated block figures to be reported as well.

If the -f flag is given, only an actual count of the blocks in the free list is made (free i—nodes are
not reported). With this option, bifdf will report on raw devices.

HARDWARE DEPENDENCIES
Series 500:
Bifdf can only report on unmounted raw devices.

SEE ALSO
bif(5), biffsck(1), df(1).

Hewlett—Packard -1- July 2, 1985

BIFFIND (1) BIFFIND (1)

NAME
biffind - find files in a BIF system

SYNOPSIS
biffind path-name-list expression

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: HP
DESCRIPTION
Biffind is intended to mimic find(1).
A BIF file name is recognized by the embedded colon (:) delimiter (see bif(5) for BIF file naming
conventions).

Biffind recursively descends the directory hierarchy for each path name in the path-name-list
(i.e., one or more path names) seeking files that match a boolean ezpression written in the pri-
maries given below.

-name pattern True if pattern matches the current file name. Pattern may consist of ascii
characters as well as the meta characters:

% match all characters
e match any character
[] match a range of characters.
-perm onum True if the file permission flags exactly match the octal number onum (see

chmod(1)). If onum is prefixed by a minus sign, more flag bits (017777, see
stat(2) become significant and the flags are compared:

(flags&onum)==onum

-type ¢ True if the type of the file is ¢, where ¢ is b, ¢, d, p, or f for block special file,
character special file, directory, fifo (a.k.a named pipe), or plain file.

-links n True if the file has n links.

-user uname True if the file belongs to the user uname. If uname is numeric and does not

appear as a login name in the /etc/passwd file, it is taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is numeric and does not
appear in the /etc/group file, it is taken as a group ID.

-size n True if the file is n blocks long.

-exec cmd True if the executed c¢md returns a zero value as exit status. The end of emd
must be punctuated by an escaped semicolon ”\;”. A command argument {} is
replaced by the current path name.

-ok cmd Like -exec except that the generated command line is printed with a question
mark first, and is executed only if the user responds by typing y.

-print Always true; causes the current path name to be printed. This option must be
included on the find command line anytime you want find to print the path
names it has found on the standard output. If -print is not specified, find
locates the files, but fails to tell you about them!

When -print is specified as the only ezpression, find prints the absolute path
names of all files it finds, beginning at each directory in the path-name-list. If
-print is included as the last component of an ezpression, find prints the abso—
lute path names of only those files which satisfy the other primaries in the
ezTpression.

Hewlett-Packard -1- July 2, 1985

BIFFIND (1) BIFFIND (1)

-inum n True if the file has inode number n.

EXAMPLES
To print the names of all files on the BIF volume /dev/archivel:

biffind /dev/archivel: —print
The following command finds all files in /dev/old:/usr/lib which are directories:
biffind /dev/old:/usr/lib -type d -print

Finally,
find /dev/games:/users -type d -exec bifls -1 {} \;
gives a long listing of every directory under /users on the device /dev/games.

FILEB
/ete/passwd
/etc/group
SEE ALSO
bif(5), find(1).

Hewlett-Packard -2- July 2, 1985

BIFFSCK (1) BIFFSCK (1)

NAME
biffsck - Bell file system consistency check and interactive repair

SYNOPSIS
biffsck [-y | [-n] [-sX | [-SX | [-tfilename | [file-system] ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: HP
Biffsck audits and interactively repairs inconsistent conditions in a Bell file system. If the file sys-
tem is consistent then the number of files, number of blocks used, and number of blocks free are
reported. If the file system is inconsistent the operator is prompted for concurrence before each
correction is attempted. It should be noted that most corrective actions will result in some loss of
data. The amount and severity of data lost may be determined from the diagnostic output. The
default action for each consistency correction is to wait for the operator to respond yes or no. If
the operator does not have write permission biffsck will default to the -n option described below.

The following flags are interpreted by biffsck.
-y Assume a yes response to all questions asked by biffsck.

-n Assume a no response to all questions asked by biffsck; and do not open the file system for
writing.

-sX Ignore the actual free list and unconditionally reconstruct a new one by rewriting the
super-block of the file system. The file system should be unmounted while this is done.

The -sX option allows for creating an optimal free-list organization. The following forms
of X are supported for the following devices:

-sBlocks—per—cylinder:Blocks—to—skip

If X is not given, the values used when the file system was created are used. If these
values were not specified, then the default values shown below are used:

An HP 7908A uses 35:2;

An HP 7933A uses 23:15;

An HP 7911A uses 16:12;

An HP 7912A uses 16:12;

An HP 7914A uses 16:12;

The default for biffsck(1) is 400:9;
The default for bifmkfs(1) is 500:3.

-SX Conditionally reconstruct the free list. This option is like -sX above except that the free list
is rebuilt only if there were no discrepancies discovered in the file system. Using -S will
force a no response to all questions asked by biffsck. This option is useful for forcing free
list reorganization on uncontaminated Bell file systems.

-t If biffsck cannot obtain enough memory to keep its tables, it uses a scratch file. If the -t
option is specified, the file named in the next argument is used as the scratch file, if needed.
Without the -t flag, biffsck will prompt the operator for the name of the scratch file. The
file chosen should not be on the file system being checked. If the file does not exist, biffsck
will create it. If the scratch file is not a special file, it is removed when biffsck completes.

File-system is a device file name on which the file system to be checked resides (i.e. /dev/rhd).
Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node or the free list.

Hewlett-Packard -1- July 2, 1985

BIFFSCK (1)

9.
10.

BIFFSCK (1)

Blocks claimed by an i-node or the free list outside the range of the file system.
Incorrect link counts.

Size checks:

Incorrect number of blocks.

Directory size not 16-byte aligned.

Bad i-node format.

Blocks not accounted for anywhere.

Directory checks:

File pointing to unallocated i-node.

I-node number out of range.

Super Block checks:

More than 65536 i—nodes.

More blocks for i-nodes than there are in the file system.
Bad free block list format.

Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator’s concurrence,
reconnected by placing them in the /lost+found directory on the bif volume. The name
assigned is the i-node number. The only restriction is that the directory lost4-found must pre-
exist in the root of the file system being checked and must have empty slots in which entries can
be made. This is accomplished by making lost+found, copying a number of files to the directory
(optimally in multiples of 64), and then removing them before biffsck is executed.

Biffsck can check file systems on both raw and blocked devices. Checking raw devices is almost
always faster, but should not be used on a mounted file system.

SEE ALSO

bif(5).
DIAGNOSTICS

The diagnostics produced by biffsck are intended to be self-explanatory.

WARNING

It is recommended that the system administrator have total responsibility for running biffsck.

BUGS

Inode numbers for . and .. in each directory should be checked for validity.

Hewlett—-Packard -2- July 2, 1985

BIFFSDB(1) BIFFSDB(1)

NAME

biffsdb - Bell file system debugger

SYNOPSIS

biffsdb special | - |

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS

Origin: HP

Biffsdb can be used to patch up a damaged Bell file system after a crash/failure. It has conver—
sions to translate block and i-numbers into their corresponding disk addresses. Also included are

mnemonic offsets to access different parts of an i-node. These greatly simplify the process of
correcting control block entries or descending the Bell file system tree.)

Biffsdb contains several error checking routines to verify i-node and block addresses. These can
be disabled if necessary by invoking biffsdb with the optional - argument or by the use of the O
symbol. (Biffsdb reads the i-size and f-size entries from the superblock of the file system as the
basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be prefixed with a zero. During
any assignment operation, numbers are checked for a possible truncation error due to a size
mismatch between source and destination.

Biffsdb reads a block at a time and will therefore work with raw as well as block I/O. A buffer
management routine is used to retain commonly used blocks of data in order to reduce the
number of read system calls. All assignment operations result in an immediate write-through of
the corresponding block.

The symbols recognized by biffsdb are:

absolute address

i convert from i-number to i-node address
b convert to block address

d directory slot offset

+,- address arithmetic

q quit

>,< save, restore an address

= numerical assignment

= incremental assignment

=- decremental assignment
character string assignment

double word mode
escape to shell

o error checking flip flop
P general print facilities
f file print facility

B byte mode

w word mode

D

1

The print facilities generate a formatted output in various styles. The current address is normal-
ized to an appropriate boundary before printing begins. It advances with the printing and is left
at the address of the last item printed. The output can be terminated at any time by typing the
delete character. If a number follows the p symbol, that many entries are printed. A check is
made to detect block boundary overflows since logically sequential blocks are generally not physi-
cally sequential. If a count of zero is used, all entries to the end of the current block are printed.
The print options available are:

Hewlett-Packard -1- July 2, 1985

BIFFSDB(1) BIFFSDB (1)

print as i-nodes

print as directories
print as octal words
print as decimal words
print as characters
print as octal bytes

o600

The f symbol is used to print data blocks associated with the current i-node. If followed by a
number, that block of the file is printed. (Blocks are numbered from zero.) The desired print
option letter follows the block number, if present, or the f symbol. This print facility works for
small as well as large files. It checks for special devices and that the block pointers used to find
the data are not zero.

Dots, tabs and spaces may be used as function delimiters but are not necessary. A line with just
a new-line character will increment the current address by the size of the data type last printed.
That is, the address is set to the next byte, word, double word, directory entry or i-node, allowing
the user to step through a region of a file system. Information is printed in a format appropriate
to the data type. Bytes, words and double words are displayed with the octal address followed by
the value in octal and decimal. A .B or .D is appended to the address for byte and double word
values, respectively. Directories are printed as a directory slot offset followed by the decimal i-
number and the character representation of the entry name. Inodes are printed with labeled fields
describing each element.

The following mnemonics are used for i-node examination and refer to the current working i-

node:
md mode
In link count
uid user ID number
gid group ID number
s0 high byte of file size
sl low word of file size
a#t data block numbers (0 - 12)
at access time
mt modification time
mayj major device number
min minor device number
EXAMPLES
386i prints i-number 386 in an i-node format. This now becomes the current work—
ing i-node.
In=4 changes the link count for the working i-node to 4.
In=+1 increments the link count by 1.
fe prints, in ASCII, block zero of the file associated with the working i-node.
2i.fd prints the first 32 directory entries for the root i-node of this file system.
dbi.fe changes the current i-node to that associated with the 5th directory entry
(numbered from zero) found from the above command. The first 512 bytes of
the file are then printed in ASCII.
1b.p0o prints the superblock of this file system in octal.
2i.a0b.d7=3 changes the i-number for the seventh directory slot in the root directory to 3.

This example also shows how several operations can be combined on one com-

Hewlett-Packard -2~ July 2, 1985

BIFFSDB (1) BIFFSDB (1)

mand line.

d7.nm="name” changes the name field in the directory slot to the given string. Quotes are
optional when used with nm if the first character is alphabetic.
SEE ALSO
bif(5), biffsck(1).

WARNING
The use of biffsdb should be limited to experienced biffsdb users.

Hewlett—Packard -3- July 2, 1985

BIFLS(1) BIFLS (1)

NAME

bifls - list contents of BIF directories

SYNOPSIS

bifls [-AadFilp | [device:names... |
bifll [-AadFilp | [device:names... |

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: HP

DESCRIPTION

Bifls is intended to mimic Is(1).

A BIF file name is recognized by the embedded colon (:) delimiter (see bif(5) for BIF file naming
conventions).

For each directory named, bifls lists the contents of that directory; for each file named, bifls
repeats its name and any other information requested.

If you are the super-user, bifls defaults to listing all files except . (current directory) and ..
(parent directory). If invoked by the name bifill, the -1 option is implied.

There are several options to bifls:

-a List all entries; in the absence of this option, entries whose names begin with a period (.)
are not listed.

“on s

-A The same as -a, except that the current directory and parent directory are not

listed. For the super—user, this flag defaults to ON, and is turned off by -A.
-d If argument is a directory, list only its name; often used with -1 to get the status of a

directory.
-F List with indicator of file type: / means a directory, * means executable...
-i List the inode of a file or files
-1 List in long format, giving mode, number of links, owner, group, size in bytes, and time of

last modification for each file

-p Do not use /etc/passwd and /etc/group to interpret user and group ownership, but rather
print out the numeric form.

EXAMPLES

FILES

NOTE

The examples that follow assume that an BIF directory structure exists on the HP-UX device file
/dev /£d.0.

The first example will list all the files in the root directory of the BIF directory structure:
bifls -a /dev/fd.0:

The second example gives (in long format) all the information about the BIF directory
/users/root itself (but not the files in the directory):

bifls -1d /dev/fd.0:/users/root

/etc/passwd to get user ids.
/etc/group to get group ids.

Remember, to obtain a listing of the BIF files on /dev/fd, you must not say bifls /dev/fd but
you must include the colon, as in bifls /dev/fd:. If the colon is omitted, you get a listing of the
HP-UX file /dev/fd, not its BIF contents.

Hewlett-Packard -1- July 2, 1985

BIFLS (1) BIFLS (1)

SEE ALSO
bif(5), 1s(1).

Hewlett-Packard -2- July 2, 1985

BIFMKDIR (1) BIFMKDIR (1)

NAME
bifmkdir - make a bif directory

SYNOPSIS
bifmkdir device:dirname ...
HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: HP
DESCRIPTION
Bifmkdir is intended to mimic mkdir(1).
A BIF file name is recognized by the embedded colon (:) delimiter (see bif(5) for BIF file naming
conventions).
Bifmkdir creates specified directories in mode 777. Standard entries, ., for the directory itself, and
.., for its parent, are made automatically.

EXAMPLES
Create an empty subdirectory named sysmods under the directory /usr/lib on HP-UX device
/dev/bif2:
bifmkdir /dev/bif2:/usr/lib/sysmods
SEE ALSO
bif(5), mkdir(1).

DIAGNOSTICS
Bifmkdir returns exit code 0 if all directories were successfully made; otherwise, it prints a diag—
nostic and returns non-zero.

Hewlett—Packard -1- July 2, 1985

BIFMKFS (1) BIFMKFS (1)

NAME
bifmkfs - construct a Bell file system

SYNOPSIS
bifmkfs special blocks[:inodes] [gap blocks]
bifmkfs special proto [gap blocks|

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: HP

DESCRIPTION
Bifmkfs constructs a Bell file system by writing on the special file according to the directions
found in the remainder of the command line. If the second argument is given as a string of digits,
bifmkfs builds a file system with a single empty directory on it. The size of the file system is the
value of blocks interpreted as a decimal number. The boot program is left uninitialized. If the
optional number of inodes is not given, the default is the number of blocks divided by 4.

If the second argument is a file name that can be opened, bifmkfs assumes it to be a prototype file
proto, and will take its directions from that file. The prototype file contains tokens separated by
spaces or new-lines. The first token is the name of a file to be copied onto block zero as the
bootstrap program. The second token is a number specifying the size of the created file system.
Typically it will be the number of blocks on the device, perhaps diminished by space for swapping.
The next token is the i-list size in blocks The next set of tokens comprise the specification for the
root file. File specifications consist of tokens giving the mode, the user ID, the group ID, and the
initial contents of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file.
(The characters -bed specify regular, block special, character special and directory files respec—
tively.) The second character of the type is either u or - to specify set-user-id mode or not. The
third is g or - for the set—group-id mode. The rest of the mode is a three digit octal number giv—
ing the owner, group, and other read, write, execute permissions (see bifchmod(1)).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the
owner of the file.

If the file is a regular file, the next token is a path name whence the contents and size are copied.
If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers. If the file is a directory, bifmkfs makes the entries . and .. and
then reads a list of names and (recursively) file specifications for the entries in the directory. The
scan is terminated with the token $.

A sample prototype specification follows:

/stand/ diskboot

4872 110

d--7773 1

usr d--7773 1
sh ---755 3 1 /bin/sh
ken d--755 6 1

$

b0 b--6443100
c0 c--6443100
$

$

In both command syntaxes, the rotational gap and the number of blocks can be specified. For
RP04 type drives, these numbers should be 7 and 418.

Hewlett-Packard -1- July 2, 1985

BIFMKFS (1) BIFMKFS (1)

EXAMPLES
To put a Bell file system on a double density micro floppy with 770 1K blocks of capacity:

bifmkfs /dev/rfd9122.0 770
where /dev/rfd9122.0 is the device special file for the micro floppy.

SEE ALSO
bif(5).

BUGS
If a prototype is used, it is not possible to initialize a file with second- or third-level indirects.

Hewlett—Packard -2- July 2, 1985

BIFRM (1) BIFRM (1)

NAME
bifrm, bifrmdir - remove BIT files or directories

SYNOPSIS
bifrm [-fri | device:file ...

bifrmdir device:dir ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP
DESCRIPTION
Bifrm and bifrmdir are intended to mimic rm(1) and rmdir(1).

A BIF file name is recognized by the embedded colon (:) delimiter (see bif(5) for BIF file naming
conventions).

Bifrm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed.

If a designated file is a directory, an error comment is printed (unless the optional argument -r
has been used - see below).

The options are:
-f removes a file with no questions asked, even if the file has no write permission.

-r causes bifrm to recursively delete the entire contents of a directory, and then the
directory itself. Bifrm can recursively delete up to 17 levels of directories.

-i causes bifrm to ask whether or not to delete each file. If -r is also specified, bifrm
asks whether to examine each directory encountered.

Bifrmdir removes entries for the named directories, which must be empty.

EXAMPLES
The following examples assume that an BIF directory structure exists on the HP-UX device file
/dev /bifdisc.

The first example recursively combs through the BIF directory /tmp and asks if each BIF file
should be removed (forced, with no file mode checks):

bifrm -irf /dev/bifdisc:/tmp
The second example removes the BIF directory /users/doug:
bifrmdir /dev/bifdisc:/users/doug

SEE ALSO
bif(5), rm(1), rmdir(1).

Hewlett—-Packard -1- July 2, 1985

BS(1)

NAME

BS(1)

bs - a compiler/interpreter for modest-sized programs

SYNOPSIS

bs [file [args | |

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

Bs is a remote descendant of Basic and Snobol4 with a little C language thrown in. Bs is
designed for programming tasks where program development time is as important as the resulting
speed of execution. Formalities of data declaration and file/process manipulation are minimized.
Line-at-a-time debugging, the trace and dump statements, and useful run-time error messages all
simplify program testing. Furthermore, incomplete programs can be debugged; inner functions
can be tested before outer functions have been written and vice versa.

If the command line file argument is provided, the file is used for input before the console is read.
By default, statements read from file are compiled for later execution. Likewise, statements
entered from the console are normally executed immediately (see compile and ezecute below).
Unless the final operation is assignment, the result of an immediate expression statement is
printed.

Bs programs are made up of input lines. If the last character on a line is a \, the line is contin—
ued. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can have the same
name.

A bs statement is either an expression or a keyword followed by zero or more expressions. Some
keywords (clear, compile, !, ezecute, include, thase, obase, and run) are always executed as they
are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment, or function call). The details
of expressions follow the description of statement types below.

break
Break exits from the inner—most for/while loop.

clear
Clears the symbol table and compiled statements. Clear is executed immediately.

compile [expression |
Succeeding statements are compiled (overrides the immediate execution default). The optional
expression is evaluated and used as a file name for further input. A clear is associated with
this latter case. Compile is executed immediately.

continue
Continue transfers to the loop—continuation of the current for/while loop.

dump [name]
The name and current value of every non-local variable is printed. Optionally, only the
named variable is reported. After an error or interrupt, the number of the last statement is
displayed. The user-function trace is displayed after an error or stop that occurred in a

Hewlett-Packard -1- July 2, 1985

BS(1)

BS(1)

function.

edit
A call is made to the editor selected by the EDITOR environment variable if it is present, or
ed(1) if EDITOR is undefined or null. If the file option is present on the command line, that
file is passed to the editor as the file to edit. (Otherwise no file name is used.) Upon exiting
the editor, a compile statement (and associated clear) is executed giving that file name as it’s
argument.

exit [expression |
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect). This statement does
not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next

for expression , expression , expression statement
for expression , expression , expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the first
expression, then is incremented by one on each loop, not to exceed the value of the second
expression. The third and fourth forms require three expressions separated by commas. The
first of these is the initialization, the second is the test (true to continue), and the third is the
loop-continuation action (normally an increment).

fun f([a, ...]) [v, ...]

nuf
Fun defines the function name, arguments, and local variables for a user-written function. Up
to ten arguments and local variables are allowed. Such names cannot be arrays, nor can they
be 1/O associated. Function definitions may not be nested. Calling an undefined function is
permissible, see function calls below.

freturn
A way to signal the failure of a user-written function. See the interrogation operator (?)
below. If interrogation is not present, freturn merely returns zero. When interrogation is
active, freturn transfers to that expression (possibly by—passing intermediate function returns).

goto name
Control is passed to the internally stored statement with the matching label.

ibase N
Ibase sets the input base (radix) to N. The only supported values for N are the constants 8,
10 (the default), and 16. Hexadecimal values 10-15 are entered as a-f. A leading digit is

required (i.e., f0a must be entered as 0f0a). Ibase (and obase, below) are executed immedi—
ately.

if expression statement
if expression

[else

-

Hewlett-Packard -2- July 2, 1985

BS(1)

BS(1)

fi
The statement (first form) or group of statements (second form) is executed if the expression
evaluates to non-zero. The strings 0 and “” (null) evaluate as zero. In the second form, an
optional else allows for a group of statements to be executed when the first group is not. The
only statement permitted on the same line with an else is an if; only other fi’s can be on the
same line with a fi. The concatenation of else and if into an eléf is supported. Only a single
fi is required to close an if ... elif ... [else ...] sequence.

include expression
The expression must evaluate to a file name. The file must contain bs source statements.
Such statements become part of the program being compiled. Include statements may not be
nested.

obase N
Obase sets the output base to N (see ibase above).

onintr label

onintr
The onintr command provides program control of interrupts. In the first form, control will
pass to the label given, just as if a goto had been executed at the time onintr was executed.
The effect of the statement is cleared after each interrupt. In the second form, an interrupt
will cause bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If no
expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first internal statement. If
the run statement is contained in a file, it should be the last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate mode.

trace [expression |
The trace statement controls function tracing. If the expression is null (or evaluates to zero),
tracing is turned off. Otherwise, a record of user—function calls/returns will be printed. Each
return decrements the ¢race expression value.

while expression statement
while expression

next
While is similar to for except that only the conditional expression for loop-continuation is
given.

!"shell command
An immediate escape to the Shell.

This statement is ignored. It is used to interject commentary in a program.
Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter (upper or lower case)
optionally followed by letters and digits. Only the first six characters of a name are
significant. Except for names declared in fun statements, all names are global to the program.
Names can take on numeric (double float) values, string values, or can be associated with
input/output (see the built-in function open() below).

Hewlett—Packard -3- July 2, 1985

BS(1)

BS(1)

name ([expression [, expression] ...])

Functions can be called by a name followed by the arguments in parentheses separated by
commas. Except for built-in functions (listed below), the name must be defined with a fun
statement. Arguments to functions are passed by value. If the function is undefined, the call
history to the call of that function is printed, and a request for a return value (as an expres-—
sion) is made. The result of that expression is taken to be the result of the undefined function.
This permits debugging programs where not all the functions are yet defined. The value is
read from the current input file.

name [expression [, expression | ...]
This syntax is used to reference either arrays or tables (see built-in table functions below).
For arrays, each expression is truncated to an integer and used as a specifier for the name.
The resulting array reference is syntactically identical to a name; a[1,2] is the same as a[1][2].
The truncated expressions are restricted to values between 0 and 32 767.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol-
lowed by a possibly signed exponent.

string
Character strings are delimited by ” characters. The \ escape character allows the double
quote (\”), new-line (\n), carriage return (\r), backspace (\b), and tab (\t) characters to
appear in a string. Otherwise, \ stands for itself.

”

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ...]) [expression]
The bracketed expression is used as a subscript to select a comma-separated expression from
the parenthesized list. List elements are numbered from the left, starting at zero. The expres—
sion:
(False, True)Ja==Db]
has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than its value. At the
moment, it is useful for testing end-of-file (see examples in the Programming Tips section
below), the result of the eval built-in function, and for checking the return from user-written
functions (see freturn). An interrogation ‘“trap” (end-of-file, etc.) causes an immediate
transfer to the most recent interrogation, possibly skipping assignment statements or interven—
ing function levels.

- expression
The result is the negation of the expression.
++ name
Increments the value of the variable (or array reference). The result is the new value.
-- name
Decrements the value of the variable. The result is the new value.
! expression
The logical negation of the expression. Watch out for the shell escape command.
expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by an

operator denoting the function. Except for the assignment, concatenation, and relational
operators, both operands are converted to numeric form before the function is applied.

Hewlett-Packard -4- July 2, 1985

BS(1)

BS(1)

Binary Operators (in increasing precedence):

+

= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.

_ (underscore) is the concatenation operator.

& (logical and) has result zero if either of its arguments are zero. It has result one if both of
its arguments are non—zero; | (logical or) has result zero if both of its arguments are zero. It
has result one if either of its arguments is non-zero. Both operators treat a null string as a
zero.

<= > >= == =
The relational operators (< less than, <= less than or equal, > greater than, >= greater than
or equal, == equal to, != not equal to) return one if their arguments are in the specified rela—

tion. They return zero otherwise. Relational operators at the same level extend as follows:
a>b>c is the same as a>b & b>c. A string comparison is made if both operands are strings.

Add and subtract.

* [/ %

Multiply, divide, and remainder.

Exponentiation.

Built—in Functions:

Dealing with arguments

arg(i)

is the value of the i—th actual parameter on the current level of function call. At level zero,
arg returns the ¢—th command-line argument (arg(0) returns bs).

narg()

returns the number of arguments passed. At level zero, the command argument count is
returned.

Mathematical

abs(x)

is the absolute value of z.

atan(x)

is the arctangent of z. Its value is between -w/2 and /2.

ceil(x)

returns the smallest integer not less than z.

cos(x)

is the cosine of z (radians).

exp(x)

is the exponential function of z.

floor(x)

returns the largest integer not greater than z.

log(x)

Hewlett-Packard -5- July 2, 1985

BS(1)

BS(1)

is the natural logarithm of z.

rand()
is a uniformly distributed random number between zero and one.

sin(x)
is the sine of z (radians).

sqrt(x)
is the square root of z.

String operations

size(s)
the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format specification in the style of
printf(3S). Only the %...f, %...e, and %...s types are safe.

index(x, y)
returns the number of the first position in z that any of the characters from y matches. No
match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a character in the same
position in ¢. Source characters that do not appear in f are copied to the result. If the string
f is longer than ¢, source characters that match in the excess portion of f do not appear in the
result.

substr(s, start, width)
returns the sub-string of s defined by the starting position and width.

match(string, pattern)

mstring(n)
The pattern is similar to the regular expression syntax of the ed(1) command. The characters
o [,], ~ (inside brackets), * and $ are special. The mstring function returns the n-th (1 <=
n <= 10) substring of the subject that occurred between pairs of the pattern symbols \(and
\) for the most recent call to match. To succeed, patterns must match the beginning of the
string (as if all patterns began with ~). The function returns the number of characters
matched. For example:

match("al123ab123”, ”.#\([a-z]\)") == 6
mstring(l) == "b”

File handling

open(name, file, function)

close(name)
The name argument must be a bs variable name (passed as a string). For the open, the file
argument may be 1) a 0 (zero), 1, or 2 representing standard input, output, or error output,
respectively; 2) a string representing a file name; or 3) a string beginning with an ! represent-
ing a command to be executed (via sh -c). The function argument must be either r (read), w
(write), W (write without new-line), or a (append). After a close, the name reverts to being
an ordinary variable. If name was a pipe, a wait(2) is executed before the close completes.
The bs exit command does not do such a wait. The initial associations are:

open(“get”, 0, "r")
open(“put”, 1, “w")
open(“puterr”, 2, "w")

Examples are given in the following section.

Hewlett-Packard -6- July 2, 1985

BS(1) BB (1)

access(s, m)
executes access(2).

ftype(s)
returns a single character file type indication: f for regular file, p for FIFO (i.e., named pipe),
d for directory, b for block special, or ¢ for character special.

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. ‘“Subscripts” (called keys)
are strings (numbers are converted). The name argument must be a bs variable name (passed
as a string). The size argument sets the minimum number of elements to be allocated. Bs
prints an error message and stops on table overflow. The result of table is name.

item(name, i)

key()
The item function accesses table elements sequentially (in normal use, there is no orderly pro—
gression of key values). Where the item function accesses values, the key function accesses the
“subscript” of the previous ¢tem call. It fails (or in the absence of an interrogate operator,
returns null) if there was no valid subscript for the previous item call. The neme argument
should not be quoted. Since exact table sizes are not defined, the interrogation operator
should be used to detect end-of-table; for example:

table("t”, 100)

If word contains “party”, the following expression adds one
to the count of that word:
++t[word)

To print out the the key/value pairs:
fori =0, ?(s = item(t, 1)), ++i if key() put = key()—":"—s
If the interrogation operator is not used, the result of item is null if there are no further elements
in the table. Null is, however, a legal “subscript”.
iskey(name, word)
The iskey function tests whether the key word exists in the table name and returns one for
true, zero for false.
Odds and ends
eval(s)
The string argument is evaluated as a bs expression. The function is handy for converting
numeric strings to numeric internal form. Ewval can also be used as a crude form of indirection,
as in:
name = “xyz”
eval(”"++"_ name)
which increments the variable zyz. In addition, eval preceded by the interrogation operator
permits the user to control bs error conditions. For example:
?eval(“open(\"X\", \"XXX\", \"r\")")
returns the value zero if there is no file named “XXX” (instead of halting the user’s program).
The following executes a goto to the label L (if it exists): "
label="L"
if !(?eval(”goto " label)) puterr = “no label”

Hewlett-Packard -7- July 2, 1985

BS(1)

plot(request, args)

BS(1)

The plot function produces output on devices recognized by tplot(1G). The requests are as

follows:

Call Function

plot(0, term)

plot(1)

plot(2, string)

plot(3, x1, y1, x2, y2)
plot(4, x, y, r)

plot(5, x1, y1, x2, y2, x3, y3)

plot(6)

plot(7, x, y)

plot(8, x, y)

plot(9, x, y)

plot(10, string)
plot(11, x1, y1, x2, y2)

plot(12, x1, y1, x2, y2)

causes further plot output to be piped into tplot(1G) with
an argument of -Tterm.

‘“erases” the plotter.

labels the current point with string.

draws the line between (z1,y1) and (22,y2).
draws a circle with center (z,y) and radius r.

draws an arc (counterclockwise) with center (z1,y1) and
endpoints (z2,y2) and (23,y3).

is not implemented.

makes the current point (z,y).

draws a line from the current point to (z,y).
draws a point at (z,y).

sets the line mode to string.

makes (z1,y1) the lower left corner of the plotting area
and (z2,y2) the upper right corner of the plotting area.

causes subsequent x (y) coordinates to be multiplied by
z1 (y1) and then added to 22 (y2) before they are plot-
ted. The initial scaling is plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and twelve are imple-
mented by piping characters to ¢plot(1G). See plot(4) for more details.

Each statement executed from the keyboard re-invokes tplot, making the results unpredictable if a
complete picture is not done in a single operation. Plotting should thus be done either in a func—
tion or a complete program, so all the output can be directed to tplot in a single stream.

last()

in immediate mode, last returns the most recently computed value.

Programming Tips:
Using bs as a calculator:
$ bs

Distance (inches) light travels in a nanosecond.

186000 * 5280 = 12 / 1e9
11.78496

Compound interest (6% for 5 years on $1,000).

int = .06 / 4

bal = 1000

for i =1 5+4 bal = bal + balxint
bal - 1000

346.855007

exit

Hewlett—Packard

_8- July 2, 1985

T

BS(1) BS(1)

The outline of a typical bs program:
initialize things:
varl =1
open(“read”, “infile”, "r”)

compute:
while ?(str = read)

next
clean up:
close("read”)

last statement executed (exit or stop):
exit

last input line:

run

Input/Output examples:

Copy “oldfile” to “newfile”.
open(“read”, “oldfile”, "r")
open(“write”, "newfile”, “w")

while ?(write = read)

close “read” and "write”:
close("read”)
close("write”)

Pipe between commands.
open(“ls”, “lls ", "r”)
open(”“pr”, “Ipr -2 -h /List!”, "w")
while ?(pr =1s) ...

be sure to close (wait for) these:
close("1s”)
close(“pr”)
SEE ALSO
ed(1), sh(1), tplot(1G), access(2), printf(3S), stdio(3S), plot(5).
See Section 3 of the Reference Manual for a further description of the mathematical functions
(pow on ezp(3M) is used for exponentiation); bs uses the Standard Input/Output package.

VARIABLES

EDITOR
the editor to use for the edit command.

BUGS
Bs is not extremely tolerant of some errors. Mistyping a fun declaration is painful, as a new
definition cannot be be made without doing a clear. Starting using the edit command is the best
solution in this case.

HARDWARE DEPENDENCIES
The graphics mode is nearly useless without ¢plot, which is not currently available.

Hewlett—Packard -9- July 2, 1985

CAL(1) CAL(1)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. If neither is specified, a calendar for the present month is printed. Year can be
between 1 and 9999. The month is a number between 1 and 12. The calendar produced is that
for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.
Beware that ‘“‘cal 83" refers to the early Christian era, not the 20th century.

Hewlett-Packard -1- July 2, 1985

CALENDAR (1) CALENDAR (1)

NAME

calendar - reminder service
SYNOPSIS

calendar | -]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION
Calendar consults the file calendar in the current directory and prints out lines that contain
today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as
“Aug. 24,” “august 24,” ““8/24,” etc., are recognized, but not “24 August” or “24/8”. On week—
ends “tomorrow” extends through Monday.

When an argument is present, calendar does its job for every user who has a file calendar in the
login directory and sends them any positive results by mai(1). Normally this is done daily in the
early morning hours under control of cron(1M).

FILES
calendar

/Jusr/lib/calprog to figure out today’s and tomorrow’s dates
/etc/passwd

/tmp/cal*

/usr/lib/crontab

SEE ALSO
mail(1), cron(1M).

BUGS
Your calendar must be public information for you to get reminder service.
Calendar’s extended idea of ‘‘tomorrow’’ does not account for holidays.

Hewlett-Packard -1- July 2, 1985

CAT(1) CAT(1)

NAME
cat - concatenate, copy, and print files

SYNOPSIS
cat [-u] [-s] [-v [-t] [-e]] file ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System V

Native Language Support:
8-bit file names, 8-bit and 16-bit data, customs, messages

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file
prints the file, and:
cat filel file2 >file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat reads from the standard input file,
enabling you to combine standard input with other files.

The options are:

-u causes output to be unbuffered (character-by-character); normally, output is
buffered.
-s makes cat silent about non-existent files, identical input and output, and write

errors. Normally, no input file may be the same as the output file unless it is a
special file. (The 4.2BSD cat —s feature is provided by ssp(1).)

-v causes non-printing characters (with the exception of tabs, new-lines and form-
feeds) to be printed visibly. Control characters are printed "X (control-X); the
DEL character (octal 0177) is printed “?. Non-ASCII characters (with the high
bit set) are printed as M-z, where z is the character specified by the seven low

order bits.
-t when used with the -v option, -t causes tabs to be printed as “I’s.
-e when used with the -v option, causes a $ character to be printed at the end of

each line (before the new-line).
The -t and -e options are ignored if the -v option is not specified.
SEE ALSO ’
cp(1), pg(1), pr(1), rmnl(1), ssp(1).
WARNING
Command formats such as

cat filel file2 >filel

overwrite the data in filel before the concatenation begins. Therefore, take care when using shell
special characters.

Hewlett-Packard -1- July 2, 1985

CB(1) CB(1)

NAME
cb - C program beautifier, formatter

SYNOPSIS
cb [-s][-j][-1leng] [file..]
HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED
Origin: System V

DESCRIPTION
Cb reads C programs either from its arguments or from the standard input and writes them on
the standard output with spacing and indentation that displays the structure of the code. Under
default options, cb preserves all user new-lines. Under the -s flag cb canonicalizes the code to the
style of Kernighan and Ritchie in The C Programming Language. The -j flag causes split lines to
be put back together. The -1 flag causes cb to split lines that are longer than leng.

SEE ALSO
ce(1).
The C Programming Language by B. W. Kernighan and D. M. Ritchie.

BUGS
Punctuation that is hidden in preprocessor statements will cause indentation errors.

Hewlett—Packard -1- July 2, 1985

Series 500 HP-UX Release 5.1 Only CC(1)

cc — C compiler

SYNOPSIS

cc [options | files

HP-UX COMPATIBILITY

Level: HP-UX/DEVELOPMENT
Origin: HP

INTERNATIONAL SUPPORT

16- and 8-bit characters in strings and comments

DESCRIPTION

Cc is the HP-UX C compiler. It accepts several types of arguments:

Arguments whose names end with .c are taken to be C source programs. They are compiled, and
each object program is left on the file whose name is that of the source with .o substituted for .c.
However, if a single C program is compiled and linked all in one step, the .o file is deleted.

Similarly, arguments whose names end with .s are taken to be assembly source programs and are
assembled, producing a .o file.

Arguments whose names end with .o are taken to be relocatable object files which are to be
included in the link operation.

Arguments can be passed to the compiler through the CCOPTS environment variable as well as
on the command line. The compiler picks up the value of CCOPTS and places its contents
before any arguments on the command line. For example (in sh(1) notation),

CCOPTS=-v
export CCOPTS
cc —g prog.c

is equivalent to
cc =V —g prog.c
The following options are recognized by cc.

—c Suppress the link edit phase of the compilation, and force an object (.0) file to be
produced for each .c file even if only one program is compiled. Object files pro-
duced from C programs must be linked before being executed.

-C Prevent the preprocessor from stripping C-style comments. See ¢pp(1) for details.

—Dname=def

—Dname Define name to the preprocessor, as if by '#define’. See c¢pp(1) for details.

-E Run only ¢pp(1) on the named C or assembly programs, and send the result to
the standard output.

-g Cause the compiler to generate additional information needed by the symbolic
debugger.

—Idir Change the algorithm used by the preprocessor for finding include files to also
search in directory dir. See ¢pp(1) for details.

—lz Cause the linker to search the library libz.a. See ld(1) for details.

-n Cause the output file from the linker to be marked as shareable. For details and

system defaults, see ld(1).

-N Cause the output file from the linker to be marked as unshareable. For details
and system defaults, see ld(1).

Hewlett-Packard -1- August 12, 1986

CC(1)

—o0 outfile
-0
-p

—t c,name

—Uname
v -

W

~Wc,arg1/,arg2..

Hewlett-Packard

Series 500 HP-UX Release 5.1 Only CC(1)

Name the output file from the linker outfile . The default name is a.out.

Invoke the optimizer.

Arrange for the compiler to produce code that counts the number of times each
routine is called; also, if link editing takes place, replace the standard startoff
routine by one that automatically calls monitor(3C) at the start and arranges to
write out a mon.out file at normal termination of execution of the object pro-
gram. An execution profile can then be generated by use of prof(1).

Run only ¢pp(1) on the named C programs and leave the result on corresponding
files suffixed .i.

Cause the output file from the linker to be marked as demand loadable. For
details and system defaults, see ld(1).

Cause the output file from the linker to be marked as not demand loadable. For
details and system defaults, see ld(1).

Cause the output of the linker to be stripped of symbol table information. The
use of this option will prevent the use of a symbolic debugger on the resulting
program. See {d(1) for more details.

Compile the named C programs, and leave the assembly language output on
corresponding files suffixed .s.

Substitute or insert subprocess ¢ with name where ¢ is one or more of a set of
identifiers indicating the subprocess(es). This option works in two modes: 1) if ¢
is a single identifier, name represents the full path name of the new subprocess;
2) if ¢ is a set of identifiers, name represents a prefix to which the standard
suffixes are concatenated to construct the full path names of the new sub-
processes.

¢ can take one or more of the values:

preprocessor (standard suffix is ¢pp)
compiler body (standard suffix is ccom)
same as ¢

assembler (standard suffix is as)
optimizer (standard suffix is c2)

linker (standard suffix is /d)

Remove any initial definition of "name” in the preprocessor. See cpp(1) for
details.

~ e SO0

Enable verbose mode, producing a step-by-step description of the compilation
process on stderr. Also echoes CCOPTS if it is set.

Suppress warning messages.

J

Hand off the argument[s] argi to pass ¢ where ¢ can assume one of the values
listed under the -t option as well as d (driver program). The —W option

specification allows additional, implementation-specific options to be recognized
by the compiler driver. For example, on the Series 300,

-W d,~x

causes the driver to call various subprocesses needed to generate MC68020 code.
Furthermore, a shorthand notation for this mechanism can be used by placing
“4+" in front of the option name as in

-2- August 12, 1986

CC(1) Series 500 HP-UX Release 5.1 Only CC(1)

+x

which is equivalent to the previous option example. Some commonly used sub-
process options can also be abbreviated in a similar fashion. Note that for simpli-
city, this shorthand must be applied to each option individually. Options that
can be abbreviated using “+” are implementation-dependent, and are listed
under HARDWARE DEPENDENCIES.

-Y Enable support of 16-bit characters inside string literals and comments. Note
that 8-bit parsing is always supported. See HPNLS(7) for more details on Native
Language Support.

-z Do not bind anything to address zero. This option will allow runtime detection of
null pointers. See the note on pointers below .

-Z Allow dereferencing of null pointers. See the note on pointers below.
Any other options encountered will generate a warning to stderr.

Other arguments are taken to be C-compatible object programs, typically produced by an earlier
cc run, or perhaps libraries of C-compatible routines. These programs, together with the results
of any compilations specified, are linked (in the order given) to produce an executable program
with the name a.out.

The Kernighan and Ritchie C text, and the various addenda to it, comprise the best available
reference on C. The documents are intentionally ambiguous in some areas. HP-UX specifies
some of these below.

char
The char type is treated as signed by default. It may be declared unsigned.

pointers

Accessing the object of a NULL (zero) pointer is technically illegal, (see Kernighan and Ritchie)
but many systems have permitted it in the past. The following is provided to maximize impor-
tability of code. If the hardware is able to return zero for reads of location zero (when accessing
at least 8 and 16 bit quantities), it must do so unless the -z flag is present. The -z flag requests
that SIGSEGV be generated if an access to location zero is attempted. Writes of location zero
may be detected as errors even if reads are not. If the hardware cannot assure that location
zero acts as if it was initialized to zero or is locked at zero, the hardware should act as if the -z
flag is always set.

identifiers
Identifiers are significant up to 255 characters.

types
Certain programs require that a type be a specific number of bits wide. The header file model.h
(see model(5)) contains a number of standard definitions for objects of a constant width,
independent of the individual implementation. It can be assumed that an int can hold at least
as much information as a short, and that a long can hold at least as much information as an
int. Additionally, either an int or a long can hold a pointer.

HARDWARE DEPENDENCIES
Series 200/300:
The following options are not supported: ~w —z

The default is to allow null pointer dereferencing, hence using —Z has no effect.

The default is to generate code for the processor on the machine where the compilation is
taking place. For example, on a Series 300 with a MC68020 processor, the compiler will
generate MC68020 code.

The compiler driver supports the following cross-compilation options which may also be
passed to it from cc using the -W d option.

Hewlett-Packard -3- August 12, 1986

cc(1)

Series 500 HP-UX Release 5.1 Only CC(1)

+x causes the compiler to generate inline code for the MC68020 and MC68881. This
option may also be passed to the driver as -W d,x .

+X causes the compiler to generate "generic” MC68010 code. The code will also run
on MC68020 processors, but it will not take advantage of new architectural capa-
bilities. This option may also be passed to the driver as -W d,-X .

The compiler subprocess ccom supports the following options which may be passed to it
from cc using the -W ¢ option. Some of these can be passed directly to the driver using
the “+” notation.

+b or-W c,~b
causes the compiler to generate code for floating point operations that will use
floating point hardware if it is installed in the computer at run-time. This option
cannot be used when code is being generated explicitly for the MC68020, either
by default on a MC68020 based system or via the +x option.

+f or -W c,—f
causes the compiler to generate code for floating point operations that will use
floating point hardware. This code will not run unless floating point hardware is
installed. This option cannot be used when code is being generated explicitly for
the MC68020, either by default on a MC68020 based system or via the +x option.

+M or -W ¢,-M
causes the compiler to not generate in-line code for the MC68881 floating-point
coprocessor. Library routines will be referenced for matherr capability. Meaning-
less on MC68010 based systems or in conjunction with +X.

+N< secondary>< n> or -W c¢,-N< secondary>< n>
This option adjusts the size of internal compiler tables. The compiler uses fixed
size arrays for certain internal tables. Secondary is one of the letters from the set
{abdepstw}, and n is an integer value. Secondary and n are not optional. The
table sizes can be re-specified using one of the secondary letters and the number n

as follows:

a maximum size of the asciz table Default = 10000 table entries.

b maximum size of the bc table. This table saves break and continue
labels within a switch statement. Default = 100 table entries.

d max size of the dimtab table. This table maintains information
about the definitions of all structures, unions, and arrays. Default
= 1000 table entries.

e max number of nodes per statement. Default = 350 table entries.

P max size of the parameter stack. Default = 150 table entries.

s max size of the symbol table. Default = 1000 table entries.

t max size of the tasciz table. Default = 20000 table entries.

w max size of the switch table stack. Default = 250 table entries.
-W ¢,-YE
This option causes source code lines to be printed on the assembly (.s)

file as assembly comments, thus showing the correspondence between C
source and the resulting assembly code.

Series 500:

The following options are not supported: —p —w

The default is not to allow null pointer dereferencing, hence using —z has no effect.

Hewlett-Packard -4 - August 12, 1986

cc(1)

Series 500 HP-UX Release 5.1 Only CC(1)

The file /lib/mert0.0 is not currently supported.

The compiler subprocess ccom supports the following options which may be passed to it from cc
using the —W ¢ option. Some of these can be passed directly to the driver using the "+” nota-

tion.

+N< secondary>< n> or -W ¢,-N< secondary>< n>
This option adjusts the size of internal compiler tables. The compiler uses fixed size
arrays for certain internal tables. Secondary is one of the letters from the set {bpwgi},
and n is an integer value. Secondary and n are not optional. The table sizes can be re-
specified using one of the secondary letters and the number n as follows:

EXAMPLE
The following will compile the C program prog.c, creating a prog.o file, and will then invoke the
link editor ld(1) to link prog.o and procedure.o with all the C startup routines in /lib/crt0.0 and
library routines from the C library libc.a; the resulting executable program is output in prog:

FILES

b

£ ®m T

e

maximum size of the bc table. This table saves break and continue labels
within a switch statement. Default = 100 table entries.

max size of the parameter stack. Default = 150 table entries.
max size of the argument stack. Default = 100 table entries.
max size of the switch table. Default = 250 table entries.

max size of the instruction table for generated code. Default = 300 table
entries.

cc prog.c procedure.o -0 prog

file.c

file.o

a.out
/tmp/ctms*
Jusr/tmp/ctmx
/lib/cpp
/lib/ccom
/lib/c2

/bin/as
/bin/1d
/lib/ert0.0
/lib/mert0.0
/lib/libc.a
/Jusr/include
Series 200/300:
/lib/ccom10

/lib/ccom20

/lib/c210

Hewlett-Packard

input file

object file

linked output

temporary

temporary

preprocessor

compiler, cc

optional optimizer (for Series 200 and Series 500 only)
assembler, as(1)

link editor, ld(1)

runtime startoff

startoff for profiling

standard C library, see section LIB of this manual

standard directory for #include files

compiler, MC68010 version (linked to /lib/ccom on MC68010 sys-
tems).

compiler, MC68020 version (linked to /lib/ccom on MC68020 sys-
tems).

optimizer, MC68010 version (linked to /lb/c2 on MC68010 systems).

-5- August 12, 1986

CC(1) Series 500 HP-UX Release 5.1 Only CC(1)

/lib/c220 optimizer, MC68020 version (linked to /lib/c2 on MC68020 systems).

/bin/as10 assembler, MC68010 version (linked to /bin/as on MC68010 systems).

/bin/as20 assembler, MC68020 version (linked to /bin/as on MC68020 systems).
SEE ALSO

adb(1), edb(1), cpp(1), as(1), 1d(1), prof(1), exit(2), monitor(3C), matherr(3M), model(5).
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

NOTES .
By default, the return value from a C program is completely random. The only two guaranteed
ways to return a specific value are to explicitly call ezit(2) or to leave the function main() with a
‘return ezpression;’ construct.

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or the link editor.

WARNINGS
Options not recognized by cc are not passed on to the link editor. The option -W l,arg may be
used to pass any such option to the link editor.

Hewlett-Packard -6- August 12, 1986

CD(1) CD(1)

NAME

cd - change working directory
SYNOPSIS

cd [directory |
HP-UX COMPATIBILITY

Level: HP- UX/NUCLEUS

Origin: System 11T

DESCRIPTION
It directory is not specified, the value of shell parameter $HOME is used as the new working
directory. If directory specifies a complete path starting with /, ., .., directory becomes the new
working directory. If neither case applies, ed tries to find the designated directory relative to one
of the paths specified by the SCDPATH shell variable. $CDPATH has the same syntax as, and
similar semantics to, the $PATH shell variable. Cd must have execute (search) permission in
directory.

Because a new process is created to execute each command, cd would be ineffective if it were
written as a normal command; therefore, it is recognized and is internal to the shell.

VARIABLES
HOME default working directory
CDPATH directories to search for directory.
SEE ALSO

pwd(1), sh(l), chdir(2).

Hewlett-Packard -1- July 2, 1985

CDB(1)

NAME

CDB(1)

cdb, fdb, pdb - C, FORTRAN, Pascal symbolic debugger

SYNOPSIS

HP-UX

cdb [-d dir] [-r file] [-p file] [-S num] [objectfile [corefile]]
fdb [cdb options |
pdb [cdb options]

COMPATIBILITY
Level: HP-UX/DEVELOPMENT
Origin: HP

Remarks: This debugger is currently implemented on the Series 200 and the Series 500.

DESCRIPTION

Cdb, fdb, and pdb are alternate names for a source level debugger for C that provides a controlled
execution environment for HP FORTRAN, and HP Pascal programs.

Objectfile is an executable program file having one or more of its component modules compiled
with the -g option. The support module /usr/lib/end.o must be included as the last object file in
the list of those linked, except for libraries included with the -1 option to ld(1). (Some systems
automate this; see the Hardware Dependencies section below.) The default for objectfile is a.out.

Corefile is a core image from a failed execution of objectfile. The default corefile is core (Series
500 does not support corefiles).

The options are:
-d dir names an alternate directory where source files are located.

-r file names a record file which is invoked immediately (for overwrite, not for append).
Used with Record/Playback Commands.

-p file names a playback file which is invoked immediately. Used with Record/Playback
Commands.

-S num sets string cache size to num bytes (default num varies with symbol table format; not
available for all formats). String cache holds data read from objectfile.

Only one objectfile and one corefile is allowed per debugging session. The program (objectfile) is
not invoked as a child process until an appropriate Job Control Command command is given.
The same program can be restarted many times (as different child processes) during a single
debugging session.

COMMANDS

File

The debugger has a various commands for viewing and manipulating the program being debugged.

Viewing Commands
May change current viewing position, but do not affect the next statement (if any) to be executed
in the child process.

dir “directory”
Add directory to the list of alternate source directories. Same as using —d invocation
option. Main procedure file must reside in the current directory or be specified with the
—d option.

e Show current file, procedure, line number, and source line

e (file | proc)
Enter (view) file or proc and print its first executable line. File can be any file, but
must not be object code.

Hewlett—Packard -1- July 2, 1985

CDB(1) CDB(1)

[depth] B
Like "e”, but sets viewing location to the current location in proc on the stack at depth
depth (not necessarily first executable line in the procedure). Default Depth is zero
(where program is currently stopped).

L Synonym for OE.
line Print source line number line in current file.

[line] p [count] v
Print one (or count) lines starting at current line (or line number line). If multiple lines
are printed, current line is marked with “=" in leftmost column.

+ [lines] Move to lines (default one) lines after current line.
-[lines] Move to lines (default one) lines before current line.
[line] w [size]
Print window of text containing size (default 11) lines centered around current line (or

line). Target line is marked with "=" in leftmost column if more than one line is
printed.

[line] W [size]
Same as “w”, but size defaults to 21 lines.

+w [size]

+W [size]
Print window of text of given or default size, beginning at end of previous window if the
previous command was a window command; otherwise at current line.

-w [size]

-W [size]
Print window of text of given or default size, ending at beginning of previous window if
previous command was a window command; otherwise at current line.

/ [string] Search forward through the current file for string, starting at the line after the current
line.

?[string] Search backward for string, starting with the line before the current line.
n Repeat previous ”/” or “?” command using same string as before.

N Same as “n”, but search goes in opposite direction from that specified by previous /"
or “?” command.

Display Formats
A format is of form "[*][count]formchar(size]”. Display formats apply only to Data Viewing
Commands, described in the next sub-section.

“+” means "use alternate address map” (if maps are supported).
Count is the number of times to apply the format style formchar (must be a number).

Size is number of bytes to be formatted for each count (overrides default size for the format
style); must be positive decimal number (except short hand notations). Size is disallowed with
formchars where it makes no sense.

Uppercase characters can be used with formats that print numbers to obtain same results as
appending “1” (useful on systems where integer is shorter than long). Available formats include:

n Print in “normal” format, based on type. char arrays and pointers to char are
interpreted as strings, and structures are fully dumped.

(d 1 D) Print in decimal (as integer or long).

Hewlett-Packard - -2- July 2, 1985

CDB(1) CDB(1)

(ulU) Print in unsigned decimal (as integer or long).

(o1 O) Print in octal (as integer or long).

(x I X) Print in hexadecimal (as integer or long).

(b1 B) Print a byte in decimal (either way).

(c1 Q) Print a character (either way).

(el E) Print in “e” floating point notation (as float or double) (see printf(3)) (floating
point constants are always doubles).

(fIF) Print in “f” floating point notation (as float or double).

(g1 G) Print in "g” floating point notation (as float or double).

a Print a string using ezpr as the address of the first byte.

] Print a string using ezpr as the address of a pointer to the first byte (same as
"xezpr/a”, except for arrays).

t Show type of ezpr (usually a variable or procedure name). For true procedure
types you must actually call the procedure, e.g. “def (2)/t".

P Print the name of the procedure containing address ezpr.

S Do a formatted dump of a structure. ezpr must be address of a structure, not

address of pointer to a structure.

Shorthand notations for size can be appended to formchar instead of a numeric size:

b 1 byte (char).
s 2 bytes (short).
1 4 bytes (long).

If you view an object with size (explicitly or implicitly) less than or equal to size of a long,
debugger changes basetype appropriately for that size so ”.” (dot) can work correctly for assign—
ments (may reduce accuracy or produce wrong value).

Data Viewing Commands

ezpr If ezpr does not resemble anything else (such as a command), it is handled as “ezpr/n”
(print expression in normal format), unless followed by “;” or “}”, in which case nothing
is printed.

expr / format
Print the contents (value) of ezpr using format.

expr? format
Print address of ezpr using format.

“[[/1format]

Back up to preceding memory location (based on the size of last thing displayed). Uses
format if supplied, or the previous format if not. No “/” is needed after “*”. To reverse
direction again (e.g. start going forward), enter “.” or dot (always an alias for current
location) followed by carriage return.

1 [proc[.depth)]
List all parameters and local variables for current procedure (or proc, if given, at the
specified depth, if any). Datadisplay uses “/n” format, except arrays and pointers are
shown as addresses; only the first word of a structure is shown.

l(albidlaz)
List all assertions, breakpoints, directories, or zignals.

Hewlett—-Packard -3- July 2, 1985

CDB(1)

CDB(1)

1flglllplr]ls)[string]

List all files (source files which built objectfile), global variables, labels (program entry
points known to the linker), procedure names, registers, or special variables (except regis—
ters). If string is present, only those things with the same initial characters are listed.

Stack Viewing Commands
[depth] t

Trace stack for the first depth (default 20) levels.

[depth] T

Same as “t”, but local variables are also displayed using ”/n” format (except that arrays
and pointers are shown as addresses; structures show first word only).

Job Control Commands
Parent (debugger) and child (objectfile) processes take turns running. Debugger is active only
while child process is stopped due to a signal (reaching a breakpoint, or terminated for whatever

reason).

r [arguments)

Run a new child process with given argument list, if any (existing child process, if any,
is terminated first). If no arguments are given, those used with last "r” command are
used again (none if "R” was used last).

Arguments may contain “<” and “>" for redirecting standard input and standard out—
put. ("<” does open(2) on file descriptor O for read-only; ">" does creat(2) on file
descriptor 1 with mode 0666). Arguments may contain shell variables, metacharacters,
quote marks, or other special syntax (expanded by a Bourne shell). “{}” are shell

n»

metacharacters, so “r” cannot be safely saved in a breakpoint or assertion command list.

R Run new child process with no argument list.
k Terminate (kill) current child process, if any.
[count] c [line]

Continue after breakpoint or signal, ignoring the signal, if any. If count is given,
current breakpoint, if any, has its count set to that value. If line is given, a temporary
breakpoint is set at that line number, with count of -1 (see Breakpoint Commands).

[count] C [line]

Continue like “¢”, but allow signal (if any) to be received.

[count] s Single step 1 (or count) statements (successive carriage-returns repeat with count of 1).

If count less than one, child process is not stepped. Child process continues with the
current signal, if any (set “$signal = 0” to prevent).

[count] S

Single step like “s”, but treat procedure calls as single statements (don’t follow them
down). If a breakpoint is hit in such a procedure, or in one that it calls, its commands
are executed. (usually all right unless there is a “"¢” command in that breakpoint’s
command list).

Debugger has no knowledge about or control over child processes forked in turn by the process
being debugged. Process being debugged should not execute a different program via ezec(2).

Child process output may be buffered, so it may not appear immediately after you step through
an output statement such as printf(3). It may not appear at all if you kill the process.

Breakpoint Commands
A breakpoint has three associated attributes:

address Commands to set breakpoints are alternate ways to specify the breakpoint address. The

breakpoint is encountered whenever address is about to be executed, regardless of the

Hewlett—Packard -4 - July 2, 1985

CDB(1) CDB(1)

path taken to get there. Only one breakpoint at a time (of any type or count) can be set
at a given address. Setting a new breakpoint at address replaces the old one, if any.

count The number of times the breakpoint is encountered prior to recognition. If count is posi-
tive, the breakpoint is “permanent”, and count decrements with each encounter. Each
time count goes to zero, the breakpoint is recognized and count is reset to one (so it stays
there until explicitly set to a different value by “¢” or “C").

If count is negative, the breakpoint is “temporary” and count increments with each
encounter. When count goes to zero, the breakpoint is recognized then deleted.

commands
These are actions to be taken upon recognition of a breakpoint before waiting for com-

mand input. Separated by “;”; may be enclosed in “{}” to delimit the list, saved with
the breakpoint, from other commands on the same line.

- Results of expressions followed by “;” or “}” are not printed unless you specify print for—
mat.

Saved commands are not parsed until breakpoint is recognized. If commands are nil at
recognition of breakpoint, debugger waits for command input.

Breakpoint commands:

1b
B list all breakpoints in the format “num: count: nnn proc: In: contents”, followed by
"{commands}”.

Leftmost number is an index number for use with “d” (delete) command.

[line] b [commands]
Set permanent breakpoint at current line (or at lne in the current procedure). For

”

immediate continuation, finish the command list with “¢”.
lezpr] d

Delete breakpoint number ezpr. If ezpr is absent, delete the breakpoint at the current

line, if any. If there is none, the debugger executes a "B” command instead.

bp [commands|
Set permanent breakpoints at the beginning (first executable line) of every debuggable
procedure. When any procedure breakpoint is hit, commands are executed.

D [b] Delete all breakpoints (including “procedure” breakpoints). “b” is optional.

D p Delete all "procedure” breakpoints. All breakpoints set by commands other than "bp”
remain set.

For the following commands, if the second character is upper case (for example,”bU" instead of
“bu”) the breakpoint is temporary (count is -1), not permanent (count is 1).

[depth] bb [commands]

|depth] B [commands)
Set breakpoint at beginning (first executable line) of procedure at specified stack depth. If
depth not specified, current procedure is used (may not be same as stack depth zero).

[depth] bx [commands]

[depth] bX [commands]
Set a breakpoint at exit (last executable line) of procedure at the given stack depth. If
depth is not specified, current procedure is used (may not be same as stack depth zero.
The breakpoint is set such that all returns of any kind go through it.

[depth] bu [commands]

|depth] BU [commands)
Set an up-level breakpoint. Breakpoint is set immediately after return to the procedure

Hewlett—Packard -5- July 2, 1985

CDB(1) CDB(1)

at specified stack depth (default one, not zero). Zero depth means “current location”.

[depth] bt [proc] [commands]

|depth] BT [proc] [commands)
Trace current procedure (or procedure at depth, or proc). Sets breakpoints at entrance
and exit of a procedure. Default entry breakpoint commands are "Q;2t;c”, (shows the
top two procedures on the stack and continues). The exit breakpoint executes “Q;L;c”
(prints the current location and continues).

If depth is given, proc must be absent or it is taken as part of commands. If depth is
missing but proc is specified, the named procedure is traced. If both depth and proc are
omitted, the current procedure is traced, which might not be the same as the one at depth
Zero.

If commands are present, they are used for the entrance breakpoint, instead of the default
shown above.

address ba [commands|

address bA [commands]
Set breakpoint at given code address. address can be the name of a procedure or an
expression containing such a name. If the child process is stopped in a non-debuggable
procedure, or in prologue code (before the first executable line of a procedure), results
may seem a little strange.

The next few commands, are not strictly part of the breakpoint group, but are used almost
exclusively as arguments to breakpoints (or assertions).

if [expr] {commands} [{commands}]
If expr evaluates to a non—zero value, the first group of commands (the first “{}” block) is
executed; otherwise it (and the following “{”, if any) is skipped. All other "{}” blocks
are always ignored (skipped), except when given as an argument to an “a”, "b”, or "!”

nen

command. The "if” command is nestable, and can be abbreviated to “i".

Q If the “quiet” command appears as the first command in a breakpoint’s command list, the
normal announcement of “proc: line: text” is not made. This allows quiet checks of vari-
ables, etc. to be made without cluttering up the screen with unwanted output. The "Q”
command is ignored if it appears anywhere else.

"any string you like”
Print the given string. Accepts standard backslashed character escapes, including "\n”
for newline. Useful for labelling output from breakpoint commands.

Assertion Control Commands
Assertions are command lists that are executed before every statement. Thus, if there is even one
active assertion, the program is single stepped at the machine instruction level (runs very slowly).
They are primarily used for tracking down nasty bugs (such as a corrupt global variable).

Assertions can be activated or suspended individually (cdb also supports overall assertions mode).

a commands
Create new assertion with given command list. List is parsed at execution time. Com-
mand list can be enclosed in “{}" to delimit it from other commands on the same line.
“l a” command lists all current assertions and the overall mode.

ezpra(al d| s)
Modify the assertion numbered ezpr: activate it, delete it, or suspend it. Suspended
assertions continue to exist, but do nothing until reactivated.

A Toggle overall state of assertions mechanism between active and suspended.

Da Delete all assertions.

Hewlett-Packard -6- July 2, 1985

CDB(1) CDB(1)

[flag] x Force exit from assertions mode. If flag is absent or evaluates to zero, exit immediately.
Otherwise, finish executing current assertion first. If an assertion executes an "x” com-
mand, the child process stops and the assertion doing the “x” is identified.

Debugger has only one active command line at a time. When assertion command begins execu—
tion, any remaining debugger command line is lost.

Signal Control Commands
Debugger catches all signals bound for a child process before the child process sces them (a func-
tion of ptrace(2) mechanism).

[signal] z [i][r](s][Q]
Maintains the “zignal” (signal) handling table. Signal is a valid signal number (default is
current signal). Options (which must be all one word) toggle the state of the appropriate
flag: ignore, report, or stop. If Q is present, the new signal state is not printed.

“1 z” lists current handling of all signals (z with no options shows the state of the current or
selected signal.

When a child process stops or terminates on a signal it is always reported, unless the breakpoint
signal command starts with "Q".

When debugger ignores a signal, “c¢” does not know about it. The signal is never ignored when a
child process terminates; only when it stops.

Record and Playback Commands
Debugger supports a record/playback feature to help recreate program states and record all
debugger output.

Commands are:

>file Set or change recordfile to file and turn recording on. Rewrites file from the start. Only
commands are recorded to this file.

>>file Same as > file but appends to file instead of overwriting.

>Qfile

>>Qfile
Set or change record-all file to file, for overwriting or appending. Record-all file can be
opened or closed, independent of recordfile. All debugger standard output is copied to the

record-all file, including prompts, commands entered, and command output (does not
capture child process output.

>(t1flc)
Turn recording on (t) or off (f), or close the recording file (¢). When recording is
resumed, new commands are appended to previous file contents. In this context, >> is
equivalent to >.

>Q(t | f1c)
Turn record-all on, off, or close the record-all file. In this context, >>@ is the same as
>Q.

> Tell current recording status (same as >>).

>@ Tell current record-all status. (same as >>@).

<file Start playback from file.

<<file Start playback from file, using single-step feature of playback.

Only command lines read from the keyboard or a playback file are recorded in the recordfile.

Command lines beginning with “>", “<”, or “!” are not copied to current recordfile (they are
copied to record-all file). To override this, begin such lines with blanks.

Hewlett—Packard -7- July 2, 1985

GDB(1) CDB(1)

NOTE: Debugger can be invoked with standard input, standard output, and/or standard error
redirected, independent of record and playback. If debugger encounters end-of-file while standard
input is redirected from anything other than a terminal, it prints a message to standard output
and exits, returning zero.

Miscellaneous Commands

<carriage-return>
An empty line or a command causes the debugger to repeat the last command, if pos—
sible, with an appropriate increment, if any. Repeatable commands are those which print
a line, print a window of lines, print a data value, single step, and single step over pro—
cedures. <carriage-return> is saved in record file as a ” ” command, to distinguish from
"D.

" on

‘D Control-D is like <carriage-return>, but repeats the previous command ten times. Note
that this command is saved in a record file as an empty line.

! [command-line]
This shell escape invokes a shell program. If command-line is present, it is executed via
system(3). Otherwise, the environment variable SHELL gives the name of the shell pro-
gram to invoke with a -i option, also using system(3). If SHELL is not found, the
debugger executes “/bin/sh -i”. In any case, the debugger then waits for the shell or
command-line to complete.

As with breakpoints, command-line can be enclosed in “{}” to delimit it from other
(debugger) commands on the same line.

f [printf-style-format”)
Set address printing format, using printf(3) format specifications (not debugger format
styles). Only the first 19 characters are used. If there is no argument, the format is set
to a system-dependent default. All addresses are assumed to be of type long, so you
should handle all four bytes to get something meaningful.

F Find and fix bug (a useless but humorous command).

g line Go to an address in the procedure on the stack at depth zero (not necessarily the current
procedure). Changes the program counter so line is the next line to be executed.

llielp Print debugger help file (command summary) using more(1).

I Print information (inquire) about the state of the debugger.

M Print current text (objectfile) and core (corefile) address maps.
M (t | c) [ezpr; [ezpr;...]]

Set text (objectfile) or core (corefile) address map. The first zero to six map values are
set to the exprs given.

q Quit the debugger. Requests confirmation to prevent losing a valuable environment.
Z Toggle case sensitivity in searches. This affects everything: file names, procedure names,
variables, and string searches! The debugger starts out as not case sensitive.

HARDWARE DEPENDENCIES
The "bx” (break on exit) command requires that compilers support it by funneling all exits
through one point. The breakpoint is always set at the last line of the procedure, which should
be, but may not be, the sole exit point.

Series 200 and Series 500:

When a C parameter is declared as an array of anything, the highest type qualifier (array) shows
up as a pointer instead. For example, “int x[]” looks like “int *x”, and “char (*x)[]” looks like
“char **x”, but “char *x[]” is treated correctly as “pointer to array of char”.

Hewlett—-Packard -8- July 2, 1985

CDB(1) CDB(1)

There is limited support for command-line calls of functions which return structures. The
debugger interprets the start of heap as a structure of the return type. However, a call such as
“abe()/t” displays the return type correctly.

$short and $long are available in addition to $result. However, $result is only set to (valid as)
the return value from the last procedure called from the command line. If the procedure returns a
double, $result is set to the value cast to long.

The source file end.c is not supported, so you can’t customize /usr/lib/end.o. The buffer size is
fixed at 200 bytes. To force linking of library routines not otherwise referenced, use -u option to
ld(1).

All compiler front ends (cc(1), fe(1), and pe(l)) automatically tell the linker to include
Jusr/lib/end.o for you if you give the -g (debug) option (compiler front end cannot detect debug
options when they are placed in source code instead).

Series 200 only:
Series 200 supports two types of string formats in addition to null-terminated C strings.
FORTRAN character variables consist of a string of bytes (no null terminator). Pascal
string variables consist of a length byte, followed by the string characters. The “\s” and
“\a” formats will display these types correctly, only if the current language is FORTRAN
or Pascal.

Series 500 only:
"bx” works, except for FORTRAN multiple returns. The compilers emit a special source
line symbol for this exit point, after the last “visible” source line.

Series 500 supports two types of string formats in addition to null-terminated C strings.
FORTRAN character variables consist of four-word (16-byte) string markers, where the
second word plus the third word plus three is the byte address of the string itself, and the
fourth word is the length of the string. Pascal string variables consist of a four-byte,
word-aligned length word followed by the string characters.

If the current language is FORTRAN, or if you use “/s” format with fdb or pdb, the
debugger interprets the variable (or expression) as a string marker (or address thereof),
which is a null pointer if the second word of the marker is zero. Multiple-count formats
show a series of fixed-length strings, beginning with the first one pointed to by the
marker. Using “<cr>" or """ to go forward or backward in memory uses the four words
after or before the current string marker as the new marker.

If the current language is Pascal, or if you use "/a” format with fdb or pdb, the
debugger interprets the variable (or expression) as a Pascal string (or address thereof).
Multiple-count formats show a series of random-length strings, using successive length
words, skipping any wasted bytes in the last word of the previous string. Likewise, using
“<er>" or “*” to go through memory skips the total bytes consumed in the last display.

There is never a corefile, so all features which depend on it don’t work. Also, there are
no address maps in the usual sense, so the "M” command is not supported.

" »

If a child process receives a signal and you then step with the “s” command (or run with
assertions active), the process free-runs through the signal handler procedure (if any)
before pausing (or doing assertions).

Code and data pointers in objectfile both contain segment numbers. At ezec(2) time, all
such pointers are mapped from ld(1) pseudo-values to real values based on actual seg-
ment numbers allocated. The debugger operates in “pseudo—address-space”, so you won’t
notice anything unusual most of the time. All addresses look the same each time you
invoke a new child process. For example, the heap always begins at "broken” address
zero (0).

Hewlett—Packard -9- July 2, 1985

CDB(1)

GDB(1)

WARNING: The debugger’s interaction with a child process is somewhat complicated, due
to the “fixing” of pointer values written to the child and the “breaking” of pointers read
from the child. If you tell the debugger to treat a pointer as a non—pointer, it may get
confused, with unpredictable results. In particular, if you set a debugger special variable
equal to a pointer value, then attempt to dereference that special variable, you will either
get garbage or cause an access error.

In the rare case where maxheap is set very large (greater than 70Mb) and your program
uses shared EMS segments (from memalle(2)), the debugger may confuse pointers into
the EMS segments with large addresses in the heap.

Addresses of unknown (non-debuggable) procedures are shown as call-type pointers, not
data pointers. They can be distinguished because the high bit is set (e.g., the decimal
value looks negative). Pointers of this form are not usable for anything; you can’t
dereference them nor set breakpoints based on them.

SYMBOL TABLE DEPENDENCIES
Series 200 and Series 500 compilers use the HP9000 Symbol Table Format.

HP9000 Symbol Table Format:

FILES

a.out

core

Procedures in FORTRAN and Pascal may have alias names in addition to normal names.
Aliases are shown by the "1 p” (list procedures) command. They can be used in place of
the normal name, as desired.

The procedure name “_MAIN__" is used as the alias name for the main program (main
procedure) in all supported languages. Do not use it for any debuggable procedures.

FORTRAN ENTRY points are flagged "ENTRY” by the "1 p” command.

When a compiler does not know array dimensions, such as for some C and FORTRAN
array parameters, it uses 0:MAXINT or 1:MAXINT, as appropriate. The “/t” format
shows such cases with “[]” (no bounds specified), and subscripts from 0 (or 1) to MAXINT
are allowed in expressions.

Even though the symbol table supports C structure, union, and enumeration tags, C
typedefs, and Pascal types, the debugger does not know how to search for them, even for
the “/t” format. They are “invisible”.

Some variables are indirect, so a child process must exist in order for the debugger to
know their addresses. When there is no child process, the address of any such variable is
shown as Oxffffftfe.

The optional pattern given with the "1 g” (list globals) command must be an exact
match, not just a leading pattern.

The string cache (see the -S option) defaults to 1Kbyte in size. This cache holds data
read from the Value Table.

Symbol names in the Value Table are never preceded by underscores, so the debugger
never bothers to search for names of that form. The only time a prefixed underscore is
expected is when searching the Linker Symbol Table for names of non-debuggable pro-
cedures.

Default objectfile to debug.
Default corefile to debug.

/Jusr/lib/cdb.help

Text file listed by the “help” command.

/usr/lib/cdb.errors

Text file which explains debugger error and warning messages.

Hewlett—Packard -10 - July 2, 1985

CDB(1) CDB(1)

/Jusr/lib/end.o
Object file to link with all debuggable programs.

SEE ALSO
cc(1), echo(1), 1d(1), more(1), creat(2), exec(2), fork(2), open(2), printf(3), system(3), a.out(5),
and the cdb Debugger tutorial in HP-UX Concepts and Tutorials.

On some systems any of the following may exist: adb(1), fc(1), pc(1), ptrace(2), core(5), sym—
tab(5), user(5).

DIAGNOSTICS
Most errors cause a reasonably accurate message to be given. Normal debugger exits return zero
and error exits return one. All debugger output goes to standard output except error messages
given just before non-zero exits, which go to standard error.

Debugger errors are preceded by “panic: “, while user errors are not. If any error occurs during
initialization, the debugger then prints “cannot continue” and quits. If any error happens after
initialization, the debugger attempts to reset itself to an idle state, waiting for command input. If
any error occurs while executing a procedure call from the command line, the context is reset to
that of the normal program.

Child process (program) errors result in signals which are communicated to the debugger via the
ptrace(2) mechanism. If a program error occurs while executing a procedure call from the com—
mand line, it is handled like any other error (i.e. you can investigate the called procedure). To
recover from this, or to abort a procedure call from the command line, type DEL, BREAK, “C, or
whatever your interrupt character is.

For more information, see the text file /usr/lib/cdb.errors.

WARNINGS
Code that is not debuggable or does not have a corresponding source file is dealt with in a half-
hearted manner. The debugger shows “unknown” for unknown file and procedure names, cannot
show code locations or interpret parameter lists, etc. However, the linker symbol table provides
procedure names for most procedures, even if not debuggable. The main procedure (main pro-
gram) must be debuggable and have a corresponding source file.

If the address given to a "ba” command is a not a code address in the child process, strange
results or errors may ensue.

If you set the address printing format to something printf(3) doesn’t like, you may get an error
(usually memory fault) each time you try to print an address, until you fix the format with
another “"f” command.

Do not use the “z” command to manipulate the SIGTRAP signal. If you change its state you had
better know what you are doing or be a very good sport!

If you single step or run with assertions through a call to longjmp(3), the child process will prob-
ably take off free-running as the debugger sets but never hits an up-level breakpoint.

Do not modify any file while the debugger has it open. If you do, the debugger gets confused and
may display garbage.

Although the debugger tries to do things reasonably, it is possible to confuse the recording
mechanism. Be careful about trying to playback from a file currently open for recording, or vice
versa; strange things can happen.

Many compilers only issue source line symbols at the end of each logical statement or physical
line, whichever is greater. This means that, if you are in the habit of saying “a = 0; b = 1;” on

one line, there is no way to put a breakpoint after the assignment to “a” but before the assign-
ment to "b”.

Some statements do not emit code where you would expect it. For example, assume:

Hewlett—Packard -11- July 2, 1985

CDB(1) CDB(1)

BUGS

99: for (1=0;i<9;i++) {
100: xyz (1);
101}

A breakpoint placed on line 99 will be hit only once in some cases. The code for incrementing is
placed at line 101. Each compiler is a little different; you must get used to what your particular
compiler does. A good way of finding out is to use single stepping to see in what order the source
lines are executed.

The output of some program generators, such as yacc(1), have compiler line number directives in
them that can confuse the debugger. It expects source line entries in the symbol table to appear
in sorted order. Removal of line directives fixes the problem, but makes it more difficult to find
error locations in the original source file. The following script, run after yace(1) and before cc(1),
comments out line number changes in C programs:

sed “/# line/s/".x$/\/x&+\//" y.tab.c >temp.c

yacc(1) will leave out line directives if invoked with the -1 option. In general, line number direc—
tives (or compiler options) are only safe so long as they never set the number backwards.

The C operators "4+", "--", and “?:” are not available. The debugger always understands all
the other C operators, except "sizeof”, if the default language is FORTRAN or Pascal.

For FORTRAN, only the additional operators ".NE.”, ".EQ.”, ".LT.”, ".LE.”, ".GT.”, and
".GE.” are supported.

For Pascal, only the operators ":=", "<>", """, “".” (as in "x".y"), "and”, "or”, “not”, "div”,
“mod”, "addr”, and "sizeof” are added.

There is no support for FORTRAN complex variables, except as a series of two separate floats or
doubles.

The debugger doesn’t understand C type casts.

The C operators "&&"” and "||” aren’t short circuit evaluated as in the compiler. All parts of
expressions involving them are evaluated, with any side-effects, even if it’s not necessary.
The debugger doesn’t understand C pointer arithmetic. “*(a+n)” is not the same as "a[n]” unless

"

a” has an element size of 1.

There is no support for C local variables declared in nested blocks, nor for any local overriding a
parameter with the same name. When looking up a local by name, parameters come first, then
locals in the order of the “}”s of the blocks in which they are declared. When listing all locals,
they are shown in the same order. When there is a name overlap, the address or data shown is
that of the first variable with that name.

CDB does not support identically-named procedures (legal in Pascal if the procedures are in
different scopes). CDB will always use the first procedure with the given name.

Pascal WITH statements are not understood. To access any variable you must specify the com—
plete “path” to it.

The debugger supports call-by-reference only for known parameters of known (debuggable) pro-
cedures. If the object to pass lives in the child process, you can fake such a call by passing "&
object”, i.e. the address of the object.

Array parameters are always passed to command-line procedure calls by address. This is correct
except for Pascal call-by-value parameters. Structure parameters are passed by address or value,
as appropriate, but only a maximum of eight bytes is passed, which can totally confuse the called
procedure. Series 500 FORTRAN string markers are never passed correctly. Only the first
number of a complex pair is passed as a parameter. Functions which return complex numbers are
are not called correctly; insufficient stack space is allocated for the return area, which can lead to

Hewlett-Packard -12- July 2, 1985

CDB(1) CDB(1)

overwriting the parameter values.

Assignments into objects greater than four bytes in size, from debugger special variables, result in
errors or invalid results.

Command lines longer than 1024 bytes are broken into pieces of that size. This may be relevant if
you run the debugger with playback or with input redirected from a file.

Hewlett-Packard -13 - July 2, 1985

CDC(1) CDC(1)

NAME

cdc - change the delta commentary of an SCCS delta

SYNOPSIS

cde -rSID [-m[mrlist]] [-y[comment]] files

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System IIT

DESCRIPTION

Cdc changes the delta commentary, for the SID specified by the -r keyletter, of each named SCCS
file.

Delta commentary is defined to be the Modification Request (MR) and comment information nor-
mally specified via the delta(1) command (-m and -y keyletters).

If a directory is named, cdc behaves as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the standard input is read (see
WARNINGS); each line of the standard input is taken to be the name of an SCCS file to be pro-
cessed.

Arguments to cdec, which may appear in any order, consist of keyletter arguments and file names.

All the described keyletter arguments apply independently to each named file:

-rSID Used to specify the SCCS IDentification (SID) string of a delta for which
the delta commentary is to be changed.
-m[mrlist) If the SCCS file has the v flag set (see admin(1)) then a list of MR numbers

to be added and/or deleted in the delta commentary of the SID specified by
the -r keyletter may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of
delta(1). In order to delete an MR, precede the MR number with the
character ! (see EXAMPLES). If the MR to be deleted is currently in the
list of MRs, it is removed and changed into a “‘comment’ line. A list of all
deleted MRs is placed in the comment section of the delta commentary and
preceded by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unes—
caped new-line character terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to be the
name of a program (or shell procedure) which validates the correctness of
the MR numbers. If a non-zero exit status is returned from the MR
number validation program, cdec terminates and the delta commentary
remains unchanged.

-y[comment] Arbitrary text used to replace the comment(s) already existing for the
delta specified by the -r keyletter. The previous comments are kept and
preceded by a comment line stating that they were changed. A null com-
ment has no effect.

If -y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is

Hewlett-Packard -1- July 2, 1985

CDC(1) CDC(1)

read; if the standard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment text.

The exact permissions necessary to modify the SCCS file are documented in the article indi-
cated under SEE ALSO. Simply stated, they are either (1) if you made the delta, you can
change its delta commentary; or (2) if you own the file and directory you can modify the
delta commentary.
EXAMPLES
cde -r1.6 -m"bl78-12345 bl77-54321 bl79-00001" -ytrouble s.file
adds bl78-12345 and bl79-00001 to the MR. list, removes bl77-54321 from the MR list, and adds
the comment trouble to delta 1.6 of s.file.
cdc -r1.6 s.file
MRs? 1bl77-54321 bl78-12345 bl79-00001
comments? trouble
does the same thing.
FILES
x—file (see delta(1))
z—file (see delta(1))
SEE ALSO
admin(1), delta(1), get(1), help(1), prs(1), scesfile(5).
SCCS User’s Guide in HP-UX Concepts and Tutorials.
DIAGNOSTICS
Use help(1) for explanations.
WARNINGS

If SCCS file names are supplied to the cdec command via the standard input (- on the command
line), then the -m and -y keyletters must also be used.

Hewlett—Packard -2- July 2, 1985

CFLOW (1) CFLOW (1)

NAME

cflow- generate C flow graph

SYNOPSIS

cflow [-r] [-ix] [-i—] [-dnum] files

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: UCB

DESCRIPTION

Cflow analyzes a collection of C, YACC, LEX, assembler, and object files and attempts to build a
graph charting the external references. Files suffixed in .y, .1, .c, and .i are YACC’d, LEX’d, and
C-preprocessed (bypassed for .i files) as appropriate and then run through the first pass of lint(1).
(The -Y option of cc(1) and the -I, -D, and -U options of the C—preprocessor are also under—
stood.) Files suffixed with .s are assembled and information is extracted (as in .o files) from the
symbol table. The output of all this non-trivial processing is collected and turned into a graph of
external references which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, followed by a suitable number of
tabs indicating the level. Then the name of the global (normally only a function not defined as an
external or beginning with an underscore; see below for the -i inclusion option) a colon and its
definition. For information extracted from C source, the definition consists of an abstract type
declaration (e.g., char %), and, delimited by angle brackets, the name of the source file and the
line number where the definition was found. Definitions extracted from object files indicate the
file name and location counter under which the symbol appeared (e.g., tezt). Leading underscores
in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name contain only the
reference number of the line where the definition may be found. For undefined references, only
<> is printed.

As an example, given the following in file.c:

int i
main()

£();

8();

£();
}
f()
{

i=h();
}

the command
cflow -ix file.c

produces the output

1 main: int(), <file.c 4>
f: int(), <file.c 11>
3 h: <>

Hewlett—Packard -1- "~ July 2, 1985

CFLOW (1) CFLOW (1)

4 ir int, <file.c 1>
5 g <>

When the nesting level becomes too deep, the -e option of pr(1) can be used to compress the tab
expansion to something less than every eight spaces.

The following options are interpreted by cflow:

-r Reverse the “caller:callee” relationship producing an inverted listing showing the callers of
each function. The listing is also sorted in lexicographical order by callee.

-ix Include external and static data symbols. The default is to include only functions in the
flowgraph.

- Include names that begin with an underscore. The default is to exclude these functions

(and data if -iz is used).

-dnum The num decimal integer indicates the depth at which the flowgraph is cut off. By
default this is a very large number. Attempts to set the cutoff depth to a nonpositive
integer will be met with contempt.

HARDWARE DEPENDENCIES
Series 200:
The size of the internal compiler tables, used by the first pass of lint(1), can be adjusted
by using the —N option. The syntax for this option is described in the HARDWARE
DEPENDENCIES section for Series 200 in the manual page for cc(1).
DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and only believes the first.
Other messages may come from the various programs used (e.g., the C—preprocessor).
SEE ALSO
as(1), cc(1), epp(1), lex(1), lint(1), nm(1), pr(1), yace(1).
BUGS

Files produced by lez(1) and yacc(1) cause the reordering of line number declarations which can

confuse cflow. To get proper results, feed cflow the yacc or lez input.

Hewlett—Packard -2- July 2, 1985

CHATR (1) Series 200 Implementation
NAME

chatr - change program’s internal attributes
SYNOPSIS

chatr [-n] [-q] [-s] files

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP

CHATR (1)

Remarks: This manual page describes chatr as implemented on Series 200 computers. Refer to
other chatr(1) manual pages for information valid for other implementations.

DESCRIPTION’

Chatr, by default, prints each file’s magic number and file attributes to the standard output.

With one or more optional arguments, chatr performs the following operations:

-n change the file from demand loaded to shared.
-q change the file from shared to demand loaded.
-S perform action silently.

Upon completion, chatr prints the file’s old and new values to the standard output file, unless -s is

in effect.
RETURN VALUE

Chatr returns zero on success. If the call to chatr is syntactically incorrect, or one or more of the
specified files cannot be acted upon, chatr returns the number of files whose attributes could not

be modified. If no files are specified, chatr returns decimal 255.

SEE ALSO
1d(1), a.out(5), magic(5).

DIAGNOSTICS

The error messages produced by chatr should be self-explanatory.

Hewlett—-Packard -1-

July 2, 1985

CHATR (1)

NAME

Series 500 Implementation CHATR (1)

chatr — change program’s internal attributes

SYNOPSIS

/Wbin/chatr [+ci-¢] [+gl-g] [+hi-h] [-mn] [+ni-n] [+pI-p] [-al-Q] [-s] [+zI-z] file

HP-UX COMPATIBILITY

Level:

Origin:

HP-UX/NON-STANDARD
HP

Remarks: This manual page describes chatr as implemented on Series 500 computers. Refer to

other chatr(1) manual pages for information valid for other implementations.

DESCRIPTION
Chatr, by default, prints each file’s magic number and file attributes to the standard output.
With one or more optional arguments, chatr performs the following operations:

Cc

g

—mn

p

-q
-Q
-S
-wn

Z

set (+) or clear (-) the virtual bit for each code segment.

set (+) or clear (-) the virtual bit of the global data segment.

set (+) or clear (=) the virtual bit for the heap of a two data segment program.
change the maximum heap size to n bytes.

mark code as shareable (+) (magic number = SHARE_MAGIC), or unshareable (-)
(magic number = EXEC_MAGIC).

set (+) or clear (-) the paged and virtual bits for the heap of a two data segment pro-
gram.

set the demand load bit for each segment.

clear the demand load bit for each segment.
perform action silently.

change the maximum working set size to n bytes.

set (+) or clear (-) the demand load bit for each segment.

Upon completion, chatr prints the file’s old and new values to the standard output file, unless —s
is in effect.

RETURN VALUE
Chatr returns zero on success. If the call to chatr is syntactically incorrect, or one or more of the

specified files cannot be acted upon, chatr returns the number of files whose attributes could not
be modified. If no files are specified, chatr returns decimal 255.

SEE ALSO

1d(1), a.out(5), magic(5).

Hewlett-Packard -1- August 12, 1986

CHATR(1) Series 500 Implementation CHATR (1)

DIAGNOSTICS
Chatr generates an error message for the following conditions:

no arguments are supplied — in this case the syntax is printed to the standard error file;
cannot open a file;
a request is made to modify a file which is not EXEC_MAGIC or SHARE_MAGIC;
working set size is larger than heap size.

Chatr generates a warning message for the following conditions:
the +p, —p, +h, or —h option is specified for a file which is a one data segment program;

the —m or —w option is specified for a file which is a one data segment program, or a file
for which the data is unpaged.

‘Hewlett-Packard -2- August 12, 1986

CHMOD (1) CHMOD (1)

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V
Native Language Support:
8-bit filenames.

DESCRIPTION
The permissions of the named files are changed according to mode, which may be absolute or
symbolic. An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who]| op permission [op permission]
The who part is a combination of the letters u (for user’s permissions), g (group) and o (other).
The letter a stands for ugo, the default if who is omitted.
Op can be + to add permission to the file’s mode, - to take away permission, or = to assign per—
mission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group ID) and t (save text - sticky); u, g or o indicate that permission is to be taken from the
current mode. Omitting permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s is only useful with u or g and t only works with u.

Only the owner of a file (or the super—user) may change its mode. Only the super-user may set
the sticky bit. In order to set the group ID, the group of the file must correspond to your current
group ID.

EXAMPLES
The first example denies write permission to others, and the second makes a file executable (using
symbolic mode):

chmod o-w file
chmod +x file

The first exymple below assigns read and execute permission to everybody, and sets the set-user—
id bit. The %econd assigns read and write permission to the file owner, and read permission to
everybody else (using absolute mode):

chmod 4555 file
chmod 644 file

SEE ALSO
1s(1), chmod(2).

Hewlett-Packard -1- July 2, 1985

CHOWN (1) CHOWN (1)

NAME
chown, chgrp - change file owner or group

SYNOPSIS
chown owner file ...
chgrp group file ...
HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V
Native Language Support:
8-bit filenames.

DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either a decimal user ID or a
login name found in the password file.
Chgrp changes the group ID of the files to group. The group may be either a decimal group ID or
a group name found in the group file.
In order to change the owner or group, you must own the file or be the super-user. If either com—
mand is invoked by other than the super—user, the set-user-ID and set-group-ID bits of the file
mode, 04000 and 02000 respectively, will be cleared.

FILES
/etc/passwd
/ete/group

SEE ALSO
chmod(1), chown(2), group(5), passwd(5).

Hewlett-Packard -1- July 2, 1985

CHSH (1) CHSH(1)

NAME
chsh - change default login shell

SYNOPSIS
chsh name [shell]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB
Remarks: Not supported on the Integral Personal Computer.
DESCRIPTION

Chsh is a command similar to passwd(1l), except that it is used to change the login shell field of
the password file rather than the password entry. If no shell is specified then the shell reverts to
the default login shell /bin/sh.

An example use of this command is:

chsh bill /bin/esh
chsh bill /bin/sh
chsh john /bin/PAM

SEE ALSO
csh(1), passwd(1), passwd(5).

Hewlett-Packard -1- July 2, 1985

CLEAR(1) CLEAR (1)

NAME
clear - clear terminal screen

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: UCB

SYNOPSIS
clear

DESCRIPTION
Clear clears your screen if this is possible. It reads the TERM environment variable for the ter—
minal type and then reads the appropriate terminfo data base to figure out how to clear the
screen.

FILES
/Jusr/lib/terminfo/?/* terminal capability files

SEE ALSO
terminfo(5).

Hewlett-Packard -1- July 2, 1985

CMP (1) CMP (1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1] [-s] filel file2

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
Native Language Support:
8-bit and 16-bit data, customs, messages.

DESCRIPTION
The two files are compared. (If filel is -, the standard input is used.) Under default options,
c¢cmp makes no comment if the files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.

Options:

-1 Print the byte number (decimal) and the differing bytes (octal) for each difference. (Byte
numbering begins at 1, rather than at 0 as is common.)

-s Print nothing for differing files; return codes only.

SEE ALSO
comm(1), diff(1).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or missing
argument.

Hewlett—Packard -1- July 2, 1985

COL(1)

NAME

COL(1)

col - filter reverse line-feeds and backspaces

SYNOPSIS

HP-UX

col [-bfipx]

COMPATABILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION

Col reads from the standard input and writes onto the standard output. It performs the line
overlays implied by reverse line feeds (ASCII code ESC—7), and by forward and reverse half-line
feeds (ESC—9 and ESC—8). It also removes backspaces in favor of multiply overstruck lines. Col
is particularly useful for filtering multicolumn output made with the .rt command of nroff(1) and
output resulting from use of the ¢bl(1) preprocessor.

If the -b option is given, col assumes that the output device in use is not capable of backspacing.
In this case, if two or more characters are to appear in the same place, only the last one read will
be output.

If the -1 option is given, col assumes the output device is a line printer (rather than a character
printer) and removes backspaces in favor of multiply overstruck full lines. It generates the
minimun number of print operations necessary to generate the required number of overstrikes.
(All but the last print operation on a line are separated by carriage returns (\r); the last print
operation is terminated by a newline (\n).)

Although col accepts half-line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full-line boundary. This
treatment can be suppressed by the -f (fine) option; in this case, the output from col may contain
forward half-line feeds (ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output wherever possible to
shorten printing time.

The ASCII control characters SO (\016) and SI (\017) are assumed by col to start and end text in
an alternate character set. The character set to which each input character belongs is remem-
bered, and on output SI and SO characters are generated as appropriate to ensure that each char-
acter is printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab, return, new-line, SI, SO,
VT (\013), and ESC followed by 7, 8, or 9. The VT character is an alternate form of full reverse
line—feed, included for compatibility with some earlier programs of this type. All other non—
printing characters are ignored.

Normally, col will ignore any unrecognized escape sequences found in its input; the -p option may
be used to cause col to output these sequences as regular characters, subject to overprinting from
reverse line motions. The use of this option is highly discouraged unless the user is fully aware of
the textual position of the escape sequences.

Note that the input format accepted by col matches the output produced by nroff(1) with either
the -T37 or -Tlp options. Use -T37 (and the -f option of col) if the ultimate disposition of the
output of col will be a device that can interpret half-line motions, and -Tlp otherwise.

SEE ALSO

NOTES

nroff(1), tbl(1).

The input format accepted by col matches the output produced by nroff with either the -T37 or
-Tlp options. Use -T37 (and the -f option of col) if the ultimate disposition of the output of col
will be a device that can interpret half-line motions, and -Tlp otherwise.

Hewlett-Packard -1- July 2, 1985

COL(1) COL(1)

BUGS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the document are
ignored. As a result, the first line must not have any superscripts.

Hewlett—Packard -2- July 2, 1985 .

COMM (1) COMM (1)

NAME

comm - select or reject lines common to two sorted files
SYNOPSIS

comm [- [123 |] filel file2

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
Native Language Support:
8-bit data, customs, messages.

DESCRIPTION
Comm reads filel and file2, which should be ordered in ASCII collating sequence (see sort(1)),
and produces a three-column output: lines only in filel; lines only in file2; and lines in both files.
The file name - means the standard input.
Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the
lines common to the two files; comm -23 prints only lines in the first file but not in the second;
comm -123 is a no-op.

SEE ALSO
cmp(1), diff(1), sdiff(1), sort(1), uniq(1).

Hewlett—Packard -1- July 2, 1985

COMPACT (1) COMPACT (1)

NAME

compact, uncompact, ccat - compress and uncompress files, and cat them

SYNOPSIS

compact [name ... |
uncompact [name ... |
ccat [file ... |

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD
Origin: UCB

DESCRIPTION

Compact compresses the named files using an adaptive Huffman code. If no file names are given,
the standard input is compacted to the standard output. Compact operates as an on-line algo-
rithm. Each time a byte is read, it is encoded immediately according to the current prefix code.
This code is an optimal Huffman code for the set of frequencies seen so far. It is unnecessary to
prepend a decoding tree to the compressed file since the encoder and the decoder start in the same
state and stay synchronized. Furthermore, compact and uncompact can operate as filters. In
particular,

... | compact | uncompact | ...

operates as a (very slow) no-op.

When an argument file is given, it is compacted and the resulting file is placed in file.C; file is
unlinked. The first two bytes of the compacted file code the fact that the file is compacted. This
code is used to prohibit recompaction.

The amount of compression to be expected depends on the type of file being compressed. Typical
values of compression are: Text (38%), Pascal Source (43%), C Source (36%) and Binary (19%).
These values are the percentages of file bytes reduced.

Uncompact restores the original file from a file compressed by compact. If no file names are given,
the standard input is uncompacted to the standard output.

Cecat cats the original file from a file compressed by compact, without uncompressing the file.

RESTRICTION

The last segment of the filename must contain fewer than thirteen characters to allow space for
the appended ’.C’.

FILES
*.C compacted file created by compact, removed by uncompact

SEE ALSO
Gallager, Robert G., ‘Variations on a Theme of Huffman’, LE.E.E. Transactions on Information
Theory, vol. IT-24, no. 6, November 1978, pp. 668 — 674.

AUTHOR

Colin L. Mc Master

Hewlett-Packard -1- July 2, 1985

CP(1)

NAME

CP(1)

¢p, In, mv - copy, link or move files

SYNOPSIS

cp filel [file2 ...] target
In [-f] [-s] filel [file2 ...| target
mv [-f] filel [file2 ...] target

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V

Native Language Support:
8-bit file names, customs, messages

DESCRIPTION

Filel is copied (linked, moved) to target. Under no circumstance can filel and target be the same
(take care when using sh(1) metacharacters). If target is a directory, then one or more files are
copied (linked, moved) to that directory. If two or more files are specified for any of these com—
mands (not counting target), then target must be a directory. If target is a file, its contents are
destroyed.

If mv or In determines that the mode of target forbids writing, it will ask permission to overwrite
the file. This is done by printing the mode (see chmod(2)) followed by the first letters for the
words yes and no in the current native language, asking for a response, and reading the standard
input for one line. If the line (which you type in) begins with the first of the choices displayed,
the operation occurs, if permissable; if not, the command exits. No questions are asked and the
mv or In is done when the -f option is used or if the standard input is not a terminal.

Only mv will allow filel to be a directory, in which case the directory rename will occur only if
the two directories have the same parent; filel is renamed target. If filel is a file and target is a
link to another file with links, the other links remain and target becomes a new file. When using
cp, if target is not a file, a new file is created which has the same mode as filel except that the
sticky bit is not set unless you are super—user; the owner and group of target are those of the user.
If target is a file, copying a file into target does not change its mode, owner, nor group. The last
modification time of target (and last access time, if target did not exist) and the last access time
of filel are set to the time the copy was made. If target is a link to a file, all links remain and the
file is changed.

You cannot use mv to perform the following operations:

n o

rename either the current working directory or its parent directory using the ”.” or
notation;

rename a directory such that its new name is the same as the name of a file contained in
that directory.

SEE ALSO

BUGS

cpio(1), link(1M), rm(1), chmod(2).

If filel and target lie on different file systems, mv must copy the file and delete the original. In
this case the owner becomes that of the copying process and any linking relationship with other
files is lost.

Ln cannot not create hard links across file systems.

You cannot use mv to rename a directory when its name ends in a slash (/).

Hewlett-Packard -1- July 2, 1985

CPIO(1) CPIO (1)

NAME

cpio - copy file archives in and out

SYNOPSIS

cpio -o [acBvxh]
cpio -i [BcdmPrtuv{sSbx6] [patterns]

cpio -p [adlmuvx] directory

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Native Language Support:
8-bit filenames.

DESCRIPTION

S +n o0

Cpio -0 (copy out) reads the standard input to obtain a list of path names and copies those files
onto the standard output together with path name and status information. Output is padded to
a 512-byte boundary.

Cpio -i (copy in) extracts files from the standard input, which is assumed to be the product of a
previous cpio -o. Only files with names that match patterns are selected. Patterns are given in
the name-generating notation of sh(1). In patterns, meta—characters ?, %, and [...] match the
slash / character. Multiple patterns may be specified and if no patterns are specified, the default
for patterns is * (i.e., select all files). The extracted files are conditionally created and copied into
the current directory tree based upon the options described below. The permissions of the files
will be those of the previous cpio -0. The owner and group of the files will be that of the current
user unless the user is super-user, which causes ¢pio to retain the owner and group of the files of
the previous cpio -o.

Cpio -p (pass) reads the standard input to obtain a list of path names of files that are condition-
ally created and copied into the destination directory tree based upon the options described below.
Destination path names are interpreted relative to the named directory.

The meanings of the available options are:

a Reset access times of input files after they have been copied.

B Input/output is to be blocked 5,120 bytes to the record (does not apply to the pass

option); meaningful only with data directed to or from devices which support variable

length records such as magnetic tape.

Directories are to be created as needed.

Write header information in ASCII character form for portability.

Interactively rename files. If the user types a null line, the file is skipped.

Print only a table of contents of the input. No files are created, read, or copied.

Copy unconditionally (normally, an older file will not replace a newer file with the same

name).

X Save or restore device special files. Mknod(2) will be used to recreate these files on a
restore, and thus -ix can only be used by the super-user. Restoring device files onto a
different system can be very dangerous. This is intended for intrasystem (backup) use.

v Verbose: causes a list of file names to be printed. When used with the t option, the
table of contents looks like the output of an Is -1 command (see Is(1)).

1 Whenever possible, link files rather than copying them. This option does not destroy
existing files. Usable only with the -p option.

m Retain previous file modification time. This option is ineffective on directories that are

' being copied.

f Copy in all files except those in patterns.

Hewlett—Packard -1- July 9, 1985

CPIO(1) CPIO(1)

P Read a file written on a PDP-11 or VAX system (with byte swapping) that did not use
the -c option. Only useful with -i (copy in). Files copied in this mode are not changed;
non-ascii files will probably need further processing to be readable; this processing often
requires knowledge of the content of the file and thus cannot always be done by this pro—
gram. (PDP-11 and VAX are registered trademarks of Digital Equipment Corpora—
tion). The -s , -S and -b options below can be used where swapping all the bytes on
the tape, rather than just the headers, is appropriate. In general, text is best processed
with —P and binary data with one of the other options.

Swap all bytes of the file. Use only with the -i option.

Swap all halfwords of the file. Use only with the -i option.

Swap both bytes and halfwords. Use only with the -i option.

Process an old (i.e., UNIX System Sizth Edition format) file. Only useful with -i (copy
in).

ST wne

Note that c¢pio archives created using a raw device file must be read using a raw device file.
When the end of the tape is reached, ¢pio will prompt the user for a new special file and continue.

If you want to pass one or more metacharacters to cpio without the shell expanding them, be sure
to precede each of them with a backslash (\).

Device files written with the -ox option (e.g. /dev/tty03) will not transport to other implementa—
tions of HP-UX.

HARDWARE DEPENDENCIES
General
The use of cpio with cartrige tape units requires additional comments. For an explana—
tion of the constraints on cartrige tapes, see ct(4).

Warning: using cpio to write directly to a cartridge tape unit can severely damage the
tape drive in a short amount of time, and is therefore strongly discouraged. The recom—
mended method of writing to the cartridge tape unit is to use ¢cio(1) in conjunction with
cpio (note that -B must not be used when tcio(1) is used). Tecio(1) buffers data into
larger pieces suitable for cartrige tapes.

The -B option must be used when writing directly (i.e. without using tcio(1)) to a CS-80
cartridge tape unit.

Series 500:

All files with i-nodes greater than or equal to 65535 are unlinkable with the -i option. A
separate copy of each file is made instead.

The number of blocks reported by cpio is always in units of 512-byte blocks, regardless of
the block size of the initialized media.

Note that the -B option must not be used when performing raw I/O to the internal mini-
ature flexible disc drive (HP 9130K), if the I/O requires more than one volume.

At and before release 4.0 on the 500 and 2.2 on the 200, these systems wrote a format which,
when crossing media boundaries on some kinds of discs, differs from the format specified by Sys-—
tem V.2 (although it matched that written by System III). The program /etc/ocpio will read
and write this format. /etc/ocpio has essentially the same features as cpio except that options
-S, -b and —f are omitted. /etc/ocpio is considered obsolescent.

EXAMPLES
The first example below copies the contents of a directory into an archive; the second duplicates a
directory hierarchy:

Hewlett—Packard -2- July 9, 1985

CPIO(1) GPIO(1)

Is | cpio -0 >/dev/mt/0Om

cd olddir
find . -depth -print | cpio -pdl newdir

The trivial case “find . -depth -print | cpio -oB >/dev/rmt/0m” can be handled more efficiently

by:
find . -cpio /dev/rmt/0Om
SEE ALSO
ar(1), find(1), tar(1), tcio(1), cpio(5).
DIAGNOSTICS

The diagnostic message “out of phase” indicates that cpio could not successfully read its particular
“magic number” in the header. Try changing header mode (¢ option) or byte swapping the
header (P or s options).

WARNING
Do not redirect the output of ¢pio to a named cpio archive file which resides in the same directory
as the original files which are part of that cpio archive. This can cause loss of data.

BUGS
Path names are restricted to 256 characters. If there are too many unique linked files, the pro-
gram runs out of memory to keep track of them and, thereafter, linking information is lost. Only
the super—user can copy special files.

Cpio tapes written on HP machines with the -ox[c] options can mislead (non-HP) versions of
cpio which do not support the -x option. If a non-HP (and non-Bell) version of cpio happens to
be modified so that (HP) cpio recognizes it as a device special file, a spurious device file could be
created.

If /dev/tty is not accessible, cpio issues a complaint, or refuses to work.

The -pd option will not create the directory typed on the command line.

The -idr option will not make empty directories.

The -plu option will not link files to existing files.

Cpio will fail while restoring files from a backup tape (cpio -i) if the following conditions are met:

your working directory during the restore is not the root directory (/), and the files
being restored have multiple links, and their path names begin with slash (/).

If these conditions are met, the following occurs:

(1) The first file on the backup tape is restored correctly;
(2) The second file is removed, and the restore fails.

Note that the second file is removed before the restore fails!

Cpio then writes the message “Cannot link file1 & file2” to stderr, but also writes ”filel linked to
file2” on stdout, as if everything went fine. The correct message is that written to stderr.

There are two work—arounds for this bug, either of which will solve the problem. The first is to
make sure that your working directory is the root directory during the restore process. The
second is to use relative file names (path names not beginning with slash) in your backup.

Hewlett—Packard -3- July 9, 1985

CPP (1) CPP (1)

NAME

cpp - C language preprocessor

SYNOPSIS

/lib/cpp [option ...] [ifile [ofile]]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Cpp is the C language preprocessor which is invoked as the first pass of any C compilation using
the cc(1) command. Its purpose is to process include and conditional compilation instructions,
and macros. Thus the output of cpp is designed to be in a form acceptable as input to the next
pass of the C compiler. As the C language evolves, cpp and the rest of the C compilation package
will be modified to follow these changes. Therefore, the use of c¢pp other than in this framework is
not suggested. The preferred way to invoke cpp is through the cc(1) command, since the func-
tionality of ¢pp may someday be moved elsewhere. See m4(1) for a general macro processor.

Cpp optionally accepts two file names as arguments. Ifile and ofile are respectively the input and
output for the preprocessor. They default to standard input and standard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information used by the next pass
of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is specified, all comments
(except those found on cpp directive lines) are passed along.

-Uname
Remove any initial definition of name, where name is a reserved symbol that is predefined
by the particular preprocessor. The current list of these possibly reserved symbols

includes:
operating system: mert, ibm, gcos, os, tss, unix
hardware: hp9000s500, hp9000s200, interdata, pdpll,
u370, u3b, udbs, vax
UNIX system variant: RES, RT, TS, PWB, hpux
lint(1): lint

All HP-UX systems will have the symbols PWB, hpux, and unix defined. Each system
will define exactly one hardware variant, as appropriate. The lint symbol will be defined
when lknt(1) is running.

-Dname

-Dname=def
Define name as if by a #define directive. If no =def is given, name is defined as 1. The
-D option has lower precedence than the -U option. That is, if the same name is used in
both a -U option and a -D option, the name will be undefined regardless of the order of
the options.

-T On HP-UX, preprocessor symbols are no longer restricted to eight characters. The -T
option forces c¢pp to use only the first eight characters for distinguishing different prepro-
cessor names. This behavior is the same as preprocessors on some other systems with
respect to the length of names and is included for backward compatability.

-Idir Change the algorithm for searching for #include files whose names do not begin with /
to look in dir before looking in the directories on the standard list. Thus, #include files
whose names are enclosed in ”” will be searched for first in the directory of the file con—
taining the #include line, then in directories named in -I options in left-to-right order,

Hewlett—Packard -1- July 2, 1985

GPP(1)

CPP (1)

and last in directories on a standard list. For #include files whose names are enclosed in
<>, the directory of the file containing the #include line is not searched. However, the
directory dir is still searched.

-Hnnn Change the internal macro definition table to be nnn bytes in size. The macro symbol
table will be increased proportionally. The default table size is 36000 bytes with 2000
symbols. This option serves to eliminate the “too many defines” and “too much defining”
€errors.

Two special names are understood by ¢pp. The name —_LINE___ is defined as the current line
number (as a decimal integer) as known by cpp, and __FILE_ _ is defined as the current file
name (as a C string) as known by cpp. They can be used anywhere (including in macros) just as
any other defined name.

All cpp directives start with lines begun by #. Any number of blanks and tabs are allowed
between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string. (token-string may be null).

#define name(arg, ..., arg) token-string

Notice that there can be no space between name and the (. Replace subsequent instances
of name followed by a (, a list of comma-separated set of tokens, and a) by token-string,
where each occurrence of an arg in the token—string is replaced by the corresponding set of
tokens in the comma-separated list. When a macro with arguments is expanded, the
arguments are placed into the expanded token-string unchanged. After the entire token—
string has been expanded, cpp re-starts its scan for names to expand at the beginning of
newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include ”filename”

#include <filename>
Include at this point the contents of filename (which will then be run through cpp). See
the -I option above for more detail.

#line integer-constant ” filename”
Causes cpp to generate line control information for the next pass of the C compiler.
Integer—constant is the line number of the next line and filename is the file where it comes
from. If ”filename” is not given, the current file name is unchanged.

#endif <text>
Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef). Each test
directive must have a matching #endif. Any text occurring on the same line as the
#endif is ignored and thus may be used to mark matching #if—#endif pairs. This
makes it easier, when reading the source, to match #if, #ifdef, and #ifndef directives
with their associated #endif directive.

#ifdef name
The lines following will appear in the output if and only if name has been the subject of a
previous #define without being the subject of an intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name has been the subject
of a previous #define without being the subject of an intervening #undef.

#if constant-ezpression
Lines following will appear in the output if and only if the constant-ezpression evaluates
to non-zero. All binary non-assignment C operators, the ?: operator, the unary —, !, and
operators are all legal in constant-expression. The precedence of the operators is the

Hewlett—-Packard -2- July 2, 1985

CPP(1) CPP(1)

same as defined by the C language. There is also a unary operator defined, which can be
used in constant-ezpression in these two forms: defined (name) or defined name.
This allows the utility of #ifdef and #ifndef in a #if directive. Only these operators,
integer constants, and names which are known by cpp should be used in constant-
expression. In particular, the sizeof operator is not available.

#else Reverses the notion of the test directive which matches this directive. Thus if lines previ-
ous to this directive are ignored, the following lines will appear in the output, and vice
versa.

The test directives and the possible #else directives can be nested. Cpp supports names up to
255 characters in length.

FILES
/usr/include standard directory for #include files
SEE ALSO
ce(1), m4(1).
DIAGNOSTICS
The error messages produced by cpp are intended to be self-explanatory. The line number and
filename where the error occurred are printed along with the diagnostic.

NOTES
When new-line characters were found in argument lists for macros to be expanded, previous ver—
sions of cpp put out the new-lines as they were found and expanded. The current version of cpp
replaces these new-lines with blanks to alleviate problems that the previous versions had when
this occurred.

Hewlett-Packard -3- July 2, 1985

CRONTAB(1) CRONTAB (1)

NAME

crontab - user crontab file

SYNOPSIS

crontab (file]
crontab -r
crontab -1

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

FILES

Crontab copies the specified file, or standard input if no file is specified, into a directory that holds
all users’ crontabs. The -r option removes a user’s crontab from the crontab directory. Crontab -1
will list the crontab file for the invoking user.

A user is permitted to use crontab if their name appears in the file /usr/lib/cron/cron.allow. If
that file does not exist, the file /usr/lib/cron/cron.deny is checked to determine if the user
should be denied access to crontab. If neither file exists, only root is allowed to submit a job. If
either file is at.deny, global usage is permitted. The allow/deny files consist of one user name per
line.

A crontab file consists of lines of six fields each. The ficlds arc separated by spaces or tabs. The
first five are integer patterns that specify the following:

minute (0-59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0-6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values), or a list of elements
separated by commas. An element is either a number, or two numbers separated by a minus sign
(meaning an inclusive range). Note that the specification of days may be made by two fields (day
of the month and day of the week). If both are specified as a list of elements, both are adhered
to. For example, 0 0 1,15 * 1 would run a command on the first and fifteenth of each month, as
well as on every Monday. To specify days by only one field, the other field should be set to * (for
example, 0 0 * % 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at the specified
times. A percent character in this field (unless escaped by \) is translated to a new-line charac—
ter. Only the first line (up to a % or end of line) of the command field is executed by the shell.
The other lines are made available to the command as standard input.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who desire to have
their .profile executed must explicitly do so in the crontab file. Cron supplies a default environ-
ment for every shell, defining HOME, LOGNAME, SHELL(=/bin/sh), and
PATH(=:/bin:/usr/bin:/usr/lbin).

NOTE: Users should remember to redirect the standard output and standard error of their com—
mands! If this is not done, any generated output or errors will be mailed to the user.

/usr/lib/cron main cron directory
/usr/spool/cron/crontabs spool area
/usr/lib/cron/log accounting information
/usr/lib/cron/cron.allow list of allowed users
/usr/lib/cron/cron.deny list of denied users

Hewlett—Packard -1- July 2, 1985

CRONTAB(1) CRONTAB (1)

SEE ALSO
sh(1), cron(1M).

Hewlett-Packard -2- July 2, 1985

CSH(1)

NAME

CSH(1)

csh - a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [-cefinstvVxX | [command file | [argument list ... |
HP-UX COMPATIBILITY

Level:
Origin:
DESCRIPTION

HP-UX/STANDARD

Csh is a command language interpreter incorporating a command history buffer and a C-like syn-

tax.

The command options are interpreted as follows:

-C

-e

£

-i

-n

=S

-t

-V

=X

-V

-X

Commands are read from the (single) following argument which must be present.
Any remaining arguments are placed in argv.

The shell exits if any invoked command terminates abnormally or yields a non-
zero exit status.

Suppress execution of the .cshre file in your home directory, thus speeding up
shell start—up time.

Forces csh to respond interactively when called from a device other than a com-
puter terminal, such as another computer. Csh normally responds non-
interactively. If csh is called from a computer terminal, it always responds
interactively, no matter which options are selected.

This option causes commands to be parsed, but not executed. This may be used
in syntactic checking of shell scripts. All substitutions are performed (history,
command, alias, etc.).

Coramand input is taken from the standard input.

A single line of input is read and executed. This option combines the -n option
described above with automatic execution of the command.

This option causes the wverbose shell variable to be set. This causes command
input to be echoed to your standard output device after history substitutions are
made.

This option causes the echo shell variable to be set. This causes all commands to
be echoed to the standard output immediately before execution.

This option causes the verbose variable to be set before .cshre is executed. This
means all .cshre commands are also echoed to the standard output.

This option causes the echo variable to be set before .cshrc is executed. This
means all .cshre commands are also echoed to the standard output.

After processing the command options, if arguments remain in the argument list, and the -c, -i,
-s, or -t options were not specified, the first remaining argument is taken as the name of a file of
commands to be executed.

COMMANDS

A simple command is a sequence of words, the first of which specifies the command to be exe-
cuted. A sequence of simple commands separated by vertical bar (I) characters forms a pipeline.
The output of each command in a pipeline is made the input of the next command in the pipeline.
Sequences of pipelines may be separated by semicolons (;), and are then executed sequentially. A
sequence of pipelines may be executed in background mode by following the last entry with an
ampersand (&) character.

Hewlett—-Packard

-1- July 2, 1985

CSH(1) CSH(1)

Any pipeline may be placed in parenthesis to form a simple command which in turn may be a
component of another pipeline. It is also possible to separate pipelines with | |” or "&&” indi-
cating, as in the C language, that the second pipeline is to be executed only if the first fails or
succeeds, respectively.

Built-In Commands
Built-in commands are executed within the shell. If a built-in command occurs as any com-—
ponent of a pipeline except the last then it is executed in a subshell. The built-in commands are:

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name. The final
form assigns the specified wordlist as the alias of name. Command and filename substitu-
tion are performed on wordlist. Name cannot be alias or unalias.

alloc This comand shows the amount of dynamic core in use, broken down into used and free
core, and the address of the last location in the heap. With an argument, alloc shows
each used and free block on the internal dynamic memory chain indicating its address,
size, and whether it is used or free. This is a debugging command.

break Causes execution to resume after the end of the nearest enclosing foreach or while. The
remaining commands on the current line are executed. Multi-level breaks are thus possi—
ble by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd

cd directory_name

chdir

chdir directory_name
Change the shell’s current working directory to directory_name. If no argument is given,
then directory_name defaults to your home directory.

If directory_name is not found as a subdirectory of the current working directory (and
does not begin with “/”, "./” or “../”), then each component of the variable cdpath is
checked to see if it has a subdirectory directory_name. Finally, if all else fails, csh treats
directory_name as a shell variable. If its value begins with ‘/’, then this is tried to see if .
it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands
on the current line are executed.

default:
Labels the default case in a switch statement. The default should come after all other
case labels.

dirs Prints the directory stack; the top of the stack is at the left; the first directory in the
stack is the current directory.

echo wordlist

echo -n wordlist
The specified words are written to the shell’s standard output, separated by spaces, and
terminated with a new-line unless the -n option is specified.

else

Hewlett-Packard -2- July 2, 1985

CSH(1) CSH(1)

end
endif
endsw See the description of the foreach, if, switch, and while statements below.

eval arguments ...
(As in sh(1).) The arguments are read as input to the shell and the resulting
command(s) executed. This is usually used to execute commands generated as the result
of command or variable substitution, since parsing occurs before these substitutions.

exec command
The specified command is executed in place of the current shell.

exit

exit (ezpression)
The shell exits either with the value of the status variable (first form) or with the value of
the specified ezpression (second form).

foreach name (wordlist)

end The variable name is successively set to each member of wordlist and the sequence of
commands between this command and the matching end are executed. (Both foreach and
end must appear alone on separate lines.)

The built-in command continue may be used to continue the loop prematurely and the
built-in command break terminates it prematurely. When this command is read from the
terminal, the loop is read once, prompting with ‘?’ before any statements in the loop are
executed. If you make a mistake while typing in a loop at the terminal you can then rub
it out.

glob wordlist
Like echo but no ‘\’ escapes are recognized and words are delimited by null characters in
the output. Useful for programs which wish to use the shell to perform filename expan—
sion on a list of words.

goto word
The specified word is filename and command expanded to yield a string of the form
‘label’. The shell rewinds its input as much as possible and searches for a line of the form
‘label:’ possibly preceded by blanks or tabs. Execution continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at locating
commands (and avoiding ezec’s). An ezec is attempted for each component of the path
where the hash function indicates a possible hit, and in each component which does not
begin with a /.

history

history n

history -r n
Displays the history event list; if n is given only the n most recent events are printed.
The -r option reverses the order of printout to be most recent first rather than oldest
first.

if (ezpression) command
If the specified expression evaluates true, then the single command with arguments is exe—
cuted. Variable substitution on command happens early, at the same time it does for the
rest of the if command. Command must be a simple command, not a pipeline, a com-
mand list, or a parenthesized command list. Input/output redirection occurs even if
expression is false, when command is not executed (this is a bug).

Hewlett—Packard -3- July 2, 1985

CSH(1) CSH(1)

if (ezpressionl) then
else if (ezpression2) then
else

endif If the specified ezpressioni is true then the commands to the first else are executed; oth—
erwise if ezpression? is true then the commands to the second else are executed, etc. Any
number of else-if pairs are possible; only one endif is needed. The else part is likewise
optional. (The words else and endif must appear at the beginning of input lines; the if
must appear alone on its input line or after an else.)

jobs [-1]
Lists the active jobs; the -1 option lists process id’s in addition to the normal information.
kill % job
kill - sig %jo0b ...
kill pid

kill -sig pid ...

kill -1 Sends either the TERM (terminate) signal or the specified signal to the specified jobs or
processes. Signals are either given by number or by names (as given in
/usr/include/signal.h, stripped of the “SIG” prefix - see signal(2)). The signal names are
listed by kill -1. There is no default, so saying just kill does not send a signal to the
current job.

login Terminates a login shell, replacing it with an instance of /bin/login. This is one way to
log off, included for compatibility with sh(1).

logout Terminates a login shell. Especially useful if ignoreeof is set.

newgrp
Changes the group identification of the caller; for details see newgrp(1). A new shell is
executed by newgrp so that the current shell environment is lost.

nice

nice +number

nice command

nice +number command
The first form sets the nice (run command priority) for this shell to 4 (the default). The
second form sets the priority to the given number. The final two forms run command at
priority 4 and number respectively. The super—user may raise the priority by specifying
negative niceness using nice -number Command is always executed in a sub-shell,
and the restrictions place on commands in simple if statements apply.

nohup | command |
Without an argument, nohup can be used in shell scripts to cause hangups to be ignored
for the remainder of the script. With an argument, causes the specified command to be
run with hangups ignored. All processes executed in the background with & are
effectively nohup’ed.

notify [%job ...]
Causes the shell to notify the user asynchronously when the status of the current (no
argument) or specified jobs changes; normally notification is presented before a prompt.
This is automatic if the shell variable notify is set.

onintr | - | [label]
Controls the action of the shell on interrupts. With no arguments, onintr restores the
default action of the shell on interrupts, which is to terminate shell scripts or to return to
the terminal command input level. If - is specified, causes all interrupts to be ignored. If

Hewlett—-Packard -4 - July 2, 1985

CSH(1)

CSH(1)

a label is given, causes the shell to execute a goto label when an interrupt is received or
a child process terminates because it was interrupted.

If the shell is running in the background and interrupts are being ignored, onintr has no
effect; interrupts continue to be ignored by the shell and all invoked commands.

popd [+n |
Pops the directory stack, returning to the new top directory. With an argument, discards
the nth entry in the stack. The elements of the directory stack arec numbered from 0
starting at the top.

pushd [name | [+n |
With no arguments, pushd exchanges the top two elements of the directory stack. Given
a name argument, pushd changes to the new directory (using cd) and pushes the old
current working directory (as in csw) onto the directory stack. With a numeric argu-
ment, rotates the nth argument of the directory stack around to be the top element and
changes to it. The members of the directory stack are numbered from the top starting at
0.

rehash Causes the internal hash table of the contents of the directories in the path variable to be
recomputed. This is needed if new commands are added to directories in the path while
you are logged in. This should only be necessary if you add commands to one of your
own directories, or if a systems programmer changes the contents of one of the system
directories.

repeat count command
The specified command (which is subject to the same restrictions as the command in the
one line if statement above) is executed count times. I/O redirections occur exactly once,
even if count is 0.

set

set name

set name=word

set name|[indez]=word

set name=(wordlist)
The first form of set shows the value of all shell variables. Variables which have other
than a single word as value print as a parenthesized word list. The second form sets
name to the null string. The third form sets name to the single word. The fourth form
sets the index’th component of name to word; this component must already exist. The
final form sets name to the list of words in wordlist. In all cases the value is command
and filename expanded.

These arguments may be repeated to set multiple values in a single set command. Note,
however, that variable expansion happens for all arguments before any setting occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most com—
monly used environment variables USER, TERM, and PATH are automatically imported to
and exported from the csh variables user, term, and path; there is no need to use setenv
for these.

shift [variable
With no argument, the members of argv are shifted to the left, discarding argv[l]. An
error occurs if argv is not set or has less than two strings assigned to it. With an argu-
ment, shift performs the same function on the specified variable.

source name
The shell reads commands from name. Source commands may be nested; if they are
nested too deeply the shell may run out of file descriptors. An error in a source at any
level terminates all nested source commands. Input during source commands is never

Hewlett-Packard -5- July 2, 1985

CSH(1)

CSH(1)

placed on the history list.

stop [%job ...]
Stops the current (no argument) or specified job which is executing in the background.

switch (string)
case stri:

breaksw

default:

breaksw

endsw Each case label (str1) is successively matched against the specified string which is first
command and filename expanded. The file metacharacters #, ?, and [...] may be used in
the case labels, which are variable expanded. If none of the labels match before a default
label is found, then the execution begins after the default label. Each case label and the
default label must appear at the beginning of a line. The command breaksw causes exe—
cution to continue after the endsw. Otherwise, control may fall through case labels and

default labels as in C. If no label matches and there is no default, execution continues
after the endsw.

time [command]
With no argument, a summary of time used by this shell and its children is printed. If an
argument is given, the specified simple command is timed and a time summary as
described under the time variable is printed. If necessary, an extra shell is created to
print the time statistic when the command completes.

umask [value |
The current file creation mask is displayed (no argument) or set to the specified value.
The mask is given in octal. Common values for the mask are 002, which gives all permis—
sions to the owner and group, and read and execute permissions to all others, or 022,
which gives all permissions to the owner, and read permission only to the group and all
others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus, all aliases are
removed by unalias #. No error occurs if pattern is omitted.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unset pattern
All variables whose names match the specified pattern are removed. Thus, all variables
are removed by unset x; this has noticeably distasteful side-effects. No error occurs if
pattern is omitted.

unsetenv pattern
Removes all variables whose names match the specified pattern from the environment.
See also the setenv command above and printenv(1).

wait All background jobs are waited for. If the shell is interactive, then an interrupt can dis—
rupt the wait, at which time the shell prints names and job numbers of all jobs known to
be outstanding.

while (ezpression)

end While the specified ezpression evaluates non-zero, the commands between the while and
the matching end are evaluated. Break and continue may be used to terminate or con—
tinue the loop prematurely. (The while and end must appear alone on their input lines.)

Hewlett-Packard -6 - July 2, 1985

CSH(1) CSH(1)

If the input is a terminal (i.e. not a script), prompting occurs the first time through the
loop as for the foreach statement.

Q

@ name=ezpression

@ name[indez]=ezpression
The first form prints the values of all the shell variables. The second form sets the
specified name to the value of ezpression. If the expression contains "<”, ">", "&" or
“1”, then at least this part of the expression must be placed within parentheses. The
third form assigns the value of ezpression to the index’th argument of name. Both name
and its indez’th component must already exist.

The operators “*=", "+=", etc., are available as in C. White space may optionally
separate the name from the assignment operator. However, spaces are mandatory in
separating components of ezpression which would otherwise be single words.

Special postfix “++" and “--" operators increment and decrement name, respectively (i.e.
@ i++).

Non-Built-In Command Execution

When a command to be executed is not a built-in command, the shell attempts to execute the
command via ezec(2). Each word in the variable path names a directory in which the shell
attempts to find the command (if the command does not begin with “/”). If neither -¢ nor -t is
given, the shell hashes the names in these directories into an internal table so that an ezec is
attempted only in those directories where the command might possibly reside. This greatly
speeds command location when a large number of directories are present in the search path. If
this mechanism has been turned off (via unhash), or if -¢ or -t was given, or if any directory com-
ponent of path does not begin with a ‘/’, the shell concatenates the directory name and the given
command name to form a path name of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus
(cd ; pwd)
prints the home directory but leaves you where you were.
cd ; pwd
does the same thing, but leaves you in the home directory.
Parenthesized commands are most often used to prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary file, then it is assumed to be a
shell script, and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias are inserted at the beginning of the argu—
ment list to form the shell command. The first word of the alias should be the full path name of
the shell (e.g. “$shell”). Note that this is a special, late-occurring case of alias substitution, which
inserts words into the argument list without modification.

Command Substitution
Command substitution is indicated by a command enclosed in single quotes (...r). The output
from such a command is normally broken into separate words at blanks, tabs and newlines, with
null words being discarded, this text then replacing the original string. Within double quotes,
only newlines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus possible for a
command substitution to yield only part of a word, even if the command outputs a complete line.

History Substitutions
History substitutions enable you to use words from previous commands as portions of new com-
mands, repeat commands, repeat arguments of a previous command in the current command, and
fix spelling mistakes in the previous command.

Hewlett-Packard -7- July 2, 1985

CSH(1) CSH(1)

History substitutions begin with an exclamation point (!). Substitutions may begin anywhere in
the input stream, but may not be nested. The exclamation point can be preceded by a backslash
to prevent its special meaning. For convenience, an exclamation point is passed to the parser
unchanged when it is followed by a blank, tab, newline, equal sign or right parenthesis. Any
input line which contains history substitution is echoed on the terminal before it is executed for
verification.

Commands input from the terminal which consist of one or more words are saved on the history
list. The history substitutions reintroduce sequences of words from these saved commands into
the input stream. The number of previous commands saved is controlled by the history variable.
The previous command is always saved, regardless of its value. Commands are numbered sequen-—
tially from 1.

You can refer to previous events by event number (such as !10 for event 10), relative event loca—
tion (such as !-2 for the second previous event), full or partial command name (such as !d for the
last event using a command with initial character d), and string expression (such as !?mic? refer—
ring to an event containing the characters mic).

These forms, without further modification, simply reintroduce the words of the specified events,
each separated by a single blank. As a special case, !! is a re-do; it refers to the most previous
command.

To select words from a command you can follow the event specification by a colon (:) and a
designator for the desired words. The words of a input line are numbered from zero. The basic
word designators are:

0 selects the first word (i.e. the command name itself).
n selects the nth word.
$ selects the last word.

a-b selects the range of words from a to b. Special cases are -y, which is an abbrevi-
ation for “word 0 through word y”, and x-, which stands for “word z up to, but
not including, word $”.

* indicates the range from the second word to the last word.
% used with a search sequence to substitute the immediately preceding matching
word.

The colon separating the command specification from the word designator can be omitted if the
argument selector begins with a ~, §, x, -, or %.

After each word designator, you can place a sequence of modifiers, each preceded by a colon. The
following modifiers are defined:

h Use only the first component of a pathname by removing all following com—
ponents.

r Use the root file name by removing any trailing suffix (.xxx).

e Use the file name’s trailing suffix (.xxx) by removing the root name.

s/l/r substitute the value of r for the value /in the indicated command.

t Use only the final file name of a pathname by removing all leading pathname
components.

Repeat the previous substitution.

Print the new command but do not execute it.

kel

q Quote the substituted words, preventing further substitutions.

Hewlett-Packard -8- July 2, 1985

T

CSH(1) CSH(1)

x Like q, but break into words at blanks, tabs and newlines.

g global command; used as a prefix to cause the specified change to be made glo-
bally (all words in the command are changed).

Unless preceded by a g, the modification is applied only to the first modifiable word. You get an
error if a substitution is attempted and cannot be completed (i.e. if you have a history buffer of 10
commands and ask for a substitution of !11).

The left hand side of substitutions are not regular expressions in the sense of the HP-UX editors,
but rather strings. Any character may be used as the delimiter in place of a slash (/); a backslash
quotes the delimiter into the [and r strings. The character & in the right hand side is replaced
by the text from the left. A \ quotes & also. A null / uses the previous string either from a ! or
from a contextual scan string s in !?s?. The trailing delimiter in the substitution may be omitted
if a newline follows immediately, as may the trailing ? in a contextual scan.

A history reference may be given without an event specification (e.g. !$). In this case the refer—
ence is to the previous command unless a previous history reference occurred on the same line, in
which case this form repeats the previous reference. Thus

17foo?" !$
gives the first and last arguments from the command matching “?foo?”.

A special abbreviation of a history reference occurs when the first non-blank character of an input
line is a caret (7). This is equivalent to “!:s””, providing a convenient shorthand for substitutions
on the text of the previous line. Thus “"1b"lib” fixes the spelling of “lib” in the previous com-—
mand.

Finally, a history substitution may be surrounded with curly braces { } if necessary to insulate it
from the characters which follow. Thus, after

Is -Id "paul
we might execute !{1}a to do
Is -1d “paula
while !la would look for a command starting with “la”.

Quoting with Single and Double Quotes
The quotation of strings by backslash (\) and double quotes (”) can be used to prevent all or
some of the remaining substitutions. Strings enclosed in backslashes are protected from any
further interpretation. Strings enclosed in double quotes are still variable and command expanded
as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case
does a double—quoted string yield parts of more than one word; single-quoted strings never do.

Alias Substitution

The shell maintains a list of aliases which can be established, displayed and modified by the alias
and unalias commands. After a command line is scanned, it is parsed into distinct commands and
the first word of each command, left-to-right, is checked to see if it has an alias. If it does, then
the text which is the alias for that command is reread with the history mechanism available as
though that command were the previous input line. The resulting words replace the command
and argument list. If no reference is made to the history list, then the argument list is left
unchanged.

Thus, if the alias for 1s is 1s -1, the command Is /usr maps to s -1 /usr, leaving the argument list
undisturbed. Similarly, if the alias for lookup was grep !” /etc/passwd, then lookup bill
maps to grep bill /etc/passwd.

If an alias is found, the word transformation of the input text is performed and the aliasing pro—
cess begins again on the re—formed input line. Looping is prevented if the first word of the new

Hewlett—Packard -9- July 2, 1985

CSH(1) CSH(1)

text is the same as the old by flagging it to prevent further aliasing. Other loops are detected and
cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can execute
alias print /pr \!x | lpr/
to make a command which uses pr(1) to print its arguments on the line printer.

Expressions
A number of the built-in commands take expressions, in which the operators are similar to those
of C, with the same precedence. These expressions appear in the @, exit, if, and while com-
mands. The following operators are available (shown in order of increasing precedence):

& | "& ==l=="1"<=><><<>> +-x /%! ()

The following list shows the grouping of these operators. The precedence decreases from top to
bottom in the list:

* /%

+ -

<< >>

<= >= <

=== =" I
The ==, !=, =", and !” operators compare their arguments as strings; all others operate on
numbers. The operators =~ and !” are like != and ==, except that the right hand side is a pat-

tern (containing *'s, ?’s, and instances of [...]) against which the left hand operand is matched.
This reduces the need for use of the switch statement in shell scripts when all that is really needed
is pattern matching.

Strings which begin with 0 are considered octal numbers. Null or missing arguments are con-
sidered 0. The result of all expressions are strings, which represent decimal numbers. It is
important to note that no two components of an expression can appear in the same word. These
components should be surrounded by spaces except when adjacent to components of expressions
which are syntactically significant to the parser - &, I, <, >, (, and).

Also available in expressions as primitive operands are command executions enclosed in curly
braces { } and file enquiries of the form “-I filename”, where [is one of:

read access
write access
execute access
existence
ownership
Zero size
plain file
directory

QAN O ® X g "

The specified filename is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible then all enquiries
return false (0). Command executions succeed, returning true, if the command exits with status
0; otherwise they fail, returning false. If more detailed status information is required then the
command should be executed outside of an expression and the variable status examined.

Control of the Flow (one)
The shell contains a number of commands which can be used to regulate the flow of control in
command files (shell scripts) and (in limited but useful ways) from terminal input. These com—
mands all operate by forcing the shell to reread or skip parts of its input and, due to the imple—
mentation, restrict the placement of some of the commands.

Hewlett—Packard -10 - July 2, 1985

CSH(1) CSH (1)

The foreach, switch, and while statements, as well as the ¢f-then-else form of the if statement,
require that the major keywords appear in a single simple command on an input line as shown
below.

If the shell’s input is not scekable, the shell buffers up input whenever a loop is being read and
performs seeks in this internal buffer to accomplish the rereading implied by the loop. (To the
extent that this allows, backward goto’s succeed on non-seckable inputs.)

Signal Handling
The shell normally ignores quit signals. Jobs running in background mode are immune to signals
generated from the keyboard, including hangups. Other signals have the values which the shell
inherited from its parent. The shells handling of interrupts and terminate signals in shell scripts
can be controlled by onintr. Login shells catch the terminate signal; otherwise this signal is
passed on to children from the state in the shell’s parent. In no case are interrupts allowed when
a login shell is reading the file .logout.

Command Line Parsing
Csh splits input lines into words at blanks and tabs. The following exceptions (parser metacharac-
ters) are considered separate words:

& ampersand;

| vertical bar;

H semicolon;

< less-than sign;

> greater-than sign;

(left parenthesis;

) right parenthesis;
&& double ampersand;

11 double vertical bar;
<< double less—-than sign;
>> double greater—than sign;

The backslash (\) removes the special meaning of these parser metacharacters. A parser meta—
character preceded by a backslash is interpreted as its ASCII value. A newline character (ASCII
10) preceded by a backslash is equivalent to a blank.

Strings enclosed in single or double quotes form parts of a word. Metacharacters in these strings,
including blanks and tabs, do not form separate words. Within pairs of backslashs or quotes, a
newline preceded by a backslash gives a true newline character.

When the shell’s input is not a terminal, the pound sign (#) introduces a comment terminated by
a newline.

CSH VARIABLES
Csh maintains a set of variables. Each variable has a value equal to zero or more strings (words).
Variables have names consisting of up to 20 letters and digits starting with a letter. The under—
score character is considered a letter. The value of a variable may be displayed and changed by
using the set and unset commands. Some of the variables are boolean, that is, the shell does not
care what their value is, only whether they are set or not.

Some operations treat variables numerically. The at sign (@) command permits numeric calcula—
tions to be performed and the result assigned to a variable. The null string is considered to be
zero, and any subsequent words of multi-word values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable expan—
sion is performed keyed by the dollar sign ($) character. Variable expansion can be prevented by
preceding the dollar sign with a backslash character (\) except within double quotes (”) where
substitution always occurs. Variables are never expanded if enclosed in single quotes. Strings
quoted by single quotes are interpreted later (see Command Substitution) so variable substitution
does not occur there until later, if at all. A dollar sign is passed unchanged if followed by a blank,

Hewlett—Packard -11- July 2, 1985

CSH(1) GCSH(1)

tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together.

Unless enclosed in double quotes or given the :q modifier, the results of variable substitution may
eventually be command and filename substituted. Within double quotes, a variable whose value
consists of multiple words expands to a portion of a single word, with the words of the variable’s
value separated by blanks. When the :q modifier is applied to a substitution, the variable
expands to multiple words with each word separated by a blank and quoted to prevent later com-
mand or filename substitution.

The following metasequences are provided for introducing variable values into the shell input.
Except as noted, it is an error to reference a variable which is not set.

$variable_name

${variable_name}
When interpreted, this sequence is replaced by the words of the value of the vari-
able variable_name, each separated by a blank. Braces insulate variable_name
from following characters which would otherwise be interpreted to be part of the
variable name itself.

If variable__name is not a csh variable, but is set in the environment, then that
value is used. Non—csh variables cannot be modified as shown below.

$variable_name|selector]

${variable_name[selector] }
This modification allows you to select only some of the words from the
value of variable_name. The selector is subjected to variable substitu—
tion and may consist of a single number or two numbers separated by a
dash. The first word of a variable’s value is numbered 1. If the first
number of a range is omitted it defaults to 1. If the last member of a
range is omitted it defaults to the total number of words in the variable
($#tvariable_name). An asterisk metacharacter used as a selector selects
all words.

$#variable__name

${#tvariable_name}
This form gives the number of words in the variable. This is useful for
forms using a [selector] option.

$0 This form substitutes the name of the file from which command input is
being read. An error occurs if the filename is not known.

$number

${number}

This form is equivalent to an indexed selection from the variable argv
($argv[number]).

$x This is equivalent to selecting all of argv ($argv[]).

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions above, as may :gh,
:gt and :gr. If curly braces { } appear in the command form then the modifiers must
appear within the braces. The current implementation allows only one : modifier on each
$ expansion.

The following substitutions may not be modified with : modifiers.

$?variable_name

${?variable_name}
Substitutes the string 1 if wvariable_name is set, 0 if it is not.
Variable_name must be a boolean variable.

Hewlett—Packard -12 - July 2, 1985

CSH(1)

$70
$$
$<

CSH(1)

Substitutes 1 if the current input filename is known, 0 if it is not.
Substitutes the (decimal) process number of the (parent) shell.

Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a shell script.

Pre-Defined and Environment variables
The following variables have special meaning to the shell. Of these, argv, cwd, home, path,
prompt, shell, and status are always set by the shell. Except for cwd and status, this setting
occurs only at initialization (initial execution of c¢sh); these variables are not modified unless
modified explicitly by the user.

Csh copies the HP-UX environment variable USER into the shell variable user, the environment
variable TERM into term, the environment variable HOME into home, and PATH into path. Csh
copies these values back into the environment whenever the csh variables are reset. The HP-UX
environment variable PATH could be set in the shell script .login, except that commands through
net(1) would not see that value.

argv

cdpath

cwd

echo

history

home

ignoreeof

mail

Hewlett—Packard

This variable is set to the arguments of the csh command statement. It
is from this variable that positional parameters are substituted, i.e. $1 is
replaced by $argv[1], etc.

This variable gives a list of alternate directories searched to find sub-
directories in chdir commands.

This variable contains the absolute pathname of your current working
directory. Whenever you change directories (using cd), this variable is
updated.

This variable is set by the -x command line option. If set, all built-in
commands and their arguments are echoed to your standard output dev—
ice just before being executed. Built-in commands are echoed before
command and filename substitution, since these substitutions are then
done selectively. For non-built-in commands, all expansions occur
before echoing.

This variable is used to create your command history buffer and to set
its size. If this variable is not set, you have no command history and can
do no history substitutions. Very large values of history may run your
shell out of memory. Values of 10 or 20 are normal. All commands,
executable or not, are saved in your command history buffer.

This variable contains the absolute pathname to your home directory.
Home is initialized from the HP-UX environment. The filename expan—
sion of tilde (") refers to this variable.

If set, csh ignores end-of-file characters from input devices which are
terminals. This prevents your processes from accidentally being killed
by control-D’s.

This variable contains a list of the files where csh checks for your mail.
Csh periodically (default is 10 minutes) checks this variable after a com-
mand completion which results in a prompt. If the variable contains a
filename that has been modified since the last check (resulting from mail
being put in the file), csh prints Youhavenewmail.

If the first word of the value of mail is numeric, that number specifies a
different mail checking interval in seconds.

If multiple mail files are specified, then the shell says
Newmailinfile_name, where file_name is the file containing the mail.

-13- July 2, 1985

CSH(1)

noclobber

noglob

nonomatch

notify

path

prompt

shell

status

time

verbose

CSH(1)

This variable places restrictions on output redirection to insure that files
are not accidentally destroyed, and that commands using append
redirection (>>) refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts
which are not dealing with filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is no longer an error for a filename expansion to not match any
existing files. If there is no match, the primitive pattern is returned. It
is still an error for the primitive pattern to be malformed, i.e. recho [
still gives an error.

If set, csh notifies you immediately (through your standard output dev—
ice) of background job completions. The default is unset (indicate job
completions just before printing a prompt).

Each word of the path variable specifies a directory in which commands
are to be sought for execution. A null word specifies your current work—
ing directory. If there is no path variable then only full path names can
be executed. When path is not set and when users do not specify full
pathnames, csh searches for the command through the directories your
current directory (.), /bin, and Jusr/bin. A csh which is given neither
the -c¢ nor the -t option normally hashes the contents of the directories
in the path variable after reading .cshrc, and each time the path variable
is reset. If new commands are added to these directories while the shell
is active, it is necessary to execute rehash for csh to access these new
commands.

This variable lets you select your own prompt character string. The
prompt is printed before each command is read from an interactive ter—
minal input. If a ! appears in the string it is replaced by the current
command history buffer event number unless a preceding \ is given.
The default prompt is the percent sign (%) for users and the pound sign
(#) for the super-user.

This variable contains the name of the file in which the esh program
resides. This variable is used in forking shells to interpret files which
have their execute bits set, but which are not executable by the system.
(See the description of Non-built-In Command Ezecution).

This variable contains the status value returned by the last command.
If the command terminated abnormally, then 0200 is added to the status
variable’s value. Built-in commands which terminated abnormally
return exit status 1, and all other built—in commands set status to 0.

This variable contains a numeric value which controls the automatic
timing of commands. If set, then esh prints, for any command which
takes more than the specified number of cpu seconds, a line of informa-
tion to your standard output device giving user, system, and real execu—
tion times plus a utilization percentage. The utilization percentage is the
ratio of user plus system times to real time. This message is printed
after the command finishes exection.

This variable is set by the -v command line option. If set, the words of
each command are printed on the standard output device after history
substitutions have been made.

Command and Filename Substitution
The remaining substitutions, command and filename substitution, are applied selectively to the

Hewlett—Packard

-14 - July 2, 1985

CSH(1) CSH(1)

arguments of built-in commands. This means that portions of expressions which are not
cevaluated are not subjected to these expansions. For commands which are not internal to the
shell, the command name is substituted separately from the argument list. This occurs very late,
after input—-output redirection is performed, and in a child of the main shell.

Filename Substitution
If a word contains any of the characters *, ?, [, or {, or begins with the character ~, then that
word is a candidate for filename substitution, also known as globbing. This word is then regarded
as a pattern, and replaced with an alphabetically sorted list of file names which match the pat—
tern. In a list of words specifying filename substitution it is an error for no pattern to match an
existing file name, but it is not required for each pattern to match. Only the metacharacters *, ?,
and [imply pattern matching, while the characters ~ and { are more like abbreviations.

In matching filenames, the character . at the beginning of a filename or immediately following a /,
as well as the character / itself, must be matched explicitly. The character * matches any string
of characters, including the null string. The character ? matches any single character. The
sequence [...] matches any one of the characters enclosed. Within the square brackets, a pair of
characters separated by - matches any character lexically between and including the two.

The tilde character (7) at the beginning of a filename is used to refer to home directories. By
itself, the tilde expands to your home directory as reflected in the value of the variable home.
When followed by a name consisting of letters, digits and - characters, the shell searches for a user
with that name and substitutes their home directory; thus “ken might expand to /users/ken
and “ken/chmach to /usr/ken/chmach. If the ~ is followed by a character other than a letter
or /, or appears somewhere other than at the beginning of a word, it is left undisturbed.

The metanotation a{b,c,d}e is a shorthand for "abe ace ade”. Left to right order is preserved,
with results of matches being sorted separately at a low level to preserve this order. This con—
struct may be nested. Thus

“source/s1/{oldls,ls}.c
expands to
/Jusr/source/s1/oldls.c /usr/source/sl/ls.c

whether or not these files exist, without any chance of error if the home directory for source is
/usr/source. Similarly,

../{memo,*box}
might expand to
../memo ../box ../mbox

(Note that “memo” was not sorted with the results of matching *box.) As a special case, {, },
and { } are passed undisturbed.

Input/Output
The standard input and standard output of a command may be redirected with the following syn—
tax:

< name
Open file name (which is first variable, command and filename expanded) as the
standard input.

<< word
Read the shell input up to a line which is identical to word. Word is not sub-
jected to variable, filename or command substitution, and each input line is com-
pared to word before any substitutions are done on this input line. Unless a
quoting \, ”, /, or * appears in word, variable and command substitution is per—
formed on the intervening lines, allowing \ to quote $ and \. Commands which
are substituted have all blanks, tabs, and newlines preserved, except for the final

Hewlett—Packard -15- July 2, 1985

CSH(1)

CSH
File

CSH(1)

newline which is dropped. The resultant text is placed in an anonymous tem-—
porary file which is given to the command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not exist then it is
created; if the file exists, it is truncated, and its previous contents are lost.
If the variable noclobber is set, then the file must not exist or be a character spe—
cial file (e.g. a terminal or /dev/null) or an error results. This helps prevent
accidental destruction of files. In this case the exclamation point (!) forms can be
used to suppress this check.
The forms involving the ampersand character (&) route the standard error into
the specified file as well as the standard output. Name is expanded in the same
way as < input filenames are.

>> name
>>& name
>>! name
>>&! name
Uses file name as standard output like >, but appends output to the end of the
file. If the variable noclobber is set, then it is an error for the file not to exist
unless one of the ! forms is given. Otherwise, it is similar to >.
A command receives the environment in which the shell was invoked as modified by the input-
output parameters and the presence of the command in a pipeline. Thus, unlike some previous
shells, commands executed from a shell script have no access to the text of the commands by
default; rather they receive the original standard input of the shell. The << mechanism should
be used to present inline data. This permits shell scripts to function as components of pipelines
and allows the shell to block read its input. Note that the default standard input for a command
run detached is not modified to be the empty file /dev/null; rather the standard input remains as
the original standard input of the shell. If this is a terminal and if the process attempts to read
from the terminal, then the process will block and the user is notified.

Diagnostic output may be directed through a pipe with the standard output. Simply use the form
“| &” rather than just "|”.

UTILITIES

Name Completion

In typing file names as arguments to commands, it is no longer necessary to type a complete
name, only a unique abbreviation is necessary. When you want the system to try to match your
abbreviation, press your ESCAPE key. The system then completes the filename for you, echoing
the full name on your terminal. If the abbreviation doesn’t match an available filename, the
terminal’s bell is sounded. The file name may be partially completed if the prefix matches
several longer file names. In this case, the name is extended up to the ambiguous deviation,
and the bell is sounded.

File name completion works equally well when other directories are addressed. In addition, the
tilde (7) convention for home directories is understood in this context.

Viewing a File or Directory List

At any point in typing a command, you may request “what files are available” or “what files
match my current specification”. Thus, when you have typed:

% cd “speech/data/bench/fritz/

you may wish to know what files or subdirectories exist (in “speech/data/bench/fritz),
without aborting the command you are typing. Typing Control-D or Control-F at this
point lists the files available. The files are listed in multicolumn format, sorted column-wise.

Hewlett-Packard -16 - July 2, 1985

CSH(1) CSH (1)

Directories and executable files are indicated with a trailing / and #, respectively. Once
printed, the command is re-echoed for you to complete. Additionally, you may want to know
which files match a prefix, the current file specification so far. If you had typed:

% cd “speech/data/bench/fr

followed by a control-D, all files and subdirectories whose prefix was “fr” in the directory
“speech/data/bench would be printed. Notice that the example before was simply a degen—
erate case of this with a null trailing file name. (The null string is a prefix of all strings.) Notice
also that a trailing slash is required to pass to a new sub-directory for both file name comple-
tion and listing. Note that the degenerate case

% "D
prints a full list of login names on the current system.

Command Name Recognition
Command name recognition and completion works in the same manner as file name recognition
and completion above. The current value of the environment variable PATH is used in search—
ing for the command. For example

% mnewa [Control]-[D]
might expand to

% newaliases
Also,

% new [Control]-[D]

lists all commands (along PATH) that begin with “new”. As an option, if the shell variable
listpathnum is set, then a number indicating the index in PATH is printed next to each command
on a [Control]-[D] listing.
Autologout

A new shell variable has been added called autologout. If the terminal remains idle (no character
input) at the shell’s top level for a number of minutes greater than the value assigned to autolo-
gout, you are automatically logged off. The autologout feature is temporarily disabled while a
command is executing. The initial value of autologout is 60. If unset or set to 0, autologout
is entirely disabled.

Sanity
The shell now restores your terminal to a sane mode if it appears to return from some command
in raw, cbreak, or noecho mode.

Saving Your History Buffer
Csh has the facility to save your history list between login sessions. If the shell variable savehist
is set to a number, then that number of command events from your history list are saved. For
example, placing the line

set history=10 savehist=10

in your .cshre file maintains a history buffer of length 10 and saves the entire list when you
logout. When you log back in, the entire buffer is restored. The commands are saved in the file
.history in your login directory.

FILES
/bin/sh standard shell, for shell scripts not starting with a #;
/tmp/shx temporary file for <<;
/ete/passwd source of home directories for "name.
/ete/cesh.login a csh script executed when starting a csh login (analogous to /etc/profile in

the Bourne shell).

Hewlett-Packard - 17 - July 2, 1985

CSH(1) CSH(1)

LIMITATIONS
Words can be no longer than 1024 characters.
The system limits argument lists to 10240 characters.
The number of arguments to a command which involves filename expansion is limited to 1/6’th
the number of characters allowed in an argument list.
Command substitutions may substitute no more characters than are allowed in an argument list.
To detect looping, the shell restricts the number of alias substititutions on a single line to 20.

SEE ALSO
sh(1), access(2), exec(2), fork(2), pipe(2), umask(2), wait(2), tty(4), a.out(5), environ(7).

BUGS
Shell built-in functions are not stoppable/restartable. Command sequences of the form "a; b ; ¢”
are also not handled gracefully when stopping is attempted. If you suspend b, the shell then
immediately executes c¢. This is especially noticeable if this expansion results from an alias. It
suffices to place the sequence of commands in ()’s to force it into a subshell, i.e. (a;b;c).

Because of the signal handling required by csh, interrupts are disabled just before a command is
executed and restored as the command begins execution. There may be a few seconds delay
between when a command is given and when interrupts are recognized.

If you do a kill job command on a pipeline, only the first process in the pipeline is killed.

Control over tty output after processes are started is primitive; perhaps this will inspire someone
to work on a good virtual terminal interface. In a virtual terminal interface much more interest—
ing things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures should
be provided rather than aliases.

Commands within loops, prompted for by ?, are not placed in the history list. Control structure
should be parsed rather than being recognized as built—in commands. This would allow control
commands to be placed anywhere, to be combined with |, and to be used with & and ; metasyn—
tax.

It should be possible to use the : modifiers on the output of command substitutions. All and more
than one : modifier should be allowed on $ substitutions.

Your terminal type is only examined the first time you attempt recognition.
To list all commands on the system along PATH, enter [SHIFT]-[CNTL]-(D].

The csh metasequence !” does not work.

Hewlett—Packard - 18 - July 2, 1985

CTAGS (1) CTAGS(1)

NAME

ctags - create a tags file

SYNOPSIS

ctags [-BFatuwvx] files ...

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: UCB

Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

Ctags makes a tags file for ez(1) (or vi(1)) from the specified C, Pascal and Fortran source files.
A tags file gives the locations of specified objects (for C, functions, macros with argments, and
typedefs; Pascal, procedures, programs and functions; FORTRAN, subroutines, progams and functions)
in a group of files. Each line of the tags file contains the object name, the file in which it is
defined, and an address specification for the object definition. All objects except C typedefs are
searched with a pattern, typedefs with a line number. Specifiers are given in separate fields on the
line, separated by blanks or tabs. Using the tags file, ex can quickly find these object’s definitions.

-x causes ctags to print a simple function index. This is done by assembling a list of func-
tion names, file names on which each function is defined, the line numbers where each
function name occurs, and the text of each line. The list is then printed on the standard
output. No tags file is created or changed.

-v A page index is produced on the standard output. This listing contains the function
name, file name, and page number within that file (assuming 56 line pages to match
pr(1)). Since the output will be sorted into lexicographic order, it may be desired to run
the output through sort -f. Sample use:

ctags -v files | sort -f > index
pr index files

Files whose name ends in .c or .h are assumed to be C source files and are searched for C routine
and macro definitions. Others are first examined to see if they contain any Pascal or Fortran rou-
tine definitions; if not, they are processed again looking for C definitions.

Other options are:
-F use forward searching patterns (/.../) (default).
-B use backward searching patterns (?...7).

-a add the information from the files to the tags file. Unlike re-building the tags file from the
original files, this can cause the same symbol to be entered twice in the tags file. This
option should be used with caution and then only in very special circumstances.

-t create tags for typedefs.
-w suppressing warning diagnostics.

-u causing the specified files to be updated in tags, that is, all references to those files are
deleted, and the new values are added to the file as in —a above. (Beware: this option is
implemented in a way which is rather slow; it is usually faster to simply rebuild the tags
file.)

The tag main is treated specially in C programs. The tag formed is created by prepending M to
the name of the file, with a trailing .c removed, if any, and leading pathname components also
removed. This makes use of ctags practical in directories with more than one program.

DIAGNOSTICS

Too many entries to sort.

Hewlett—Packard -1- July 2, 1985

CTAGS(1) CTAGS(1)

An attempt to get additional heap space failed; the sort could not be performed.

Duplicate entry in file file, line line: name.
Second entry ignored.

The same name was detected twice in the same file. A tags entry was made only for the
first name found.

Duplicate entry in files filel and file2: name (Warning only).

The same name was detected in two different files. A tags entry was made only for the
first name found.

FILES
tags output tags file
OTAGS temporary used by —u
SEE ALSO
ex(1), vi(1).
BUGS

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a
very simpleminded way. No attempt is made to deal with block structure; if there are two Pascal
procedures in different blocks with the same name a warning message will be generated.

The method of deciding whether to look for C or Pascal and FORTRAN functions is an approxi-
mation and can be fooled by unusual programs.

It does not know about #ifdefs and Pascal types.

It relies on the input being well formed to detect typedefs.

Use of —tx shows only the last line of typedefs.

Ez(1) is naive about tags files with several identical tags; it simply chooses the first entry its
(non-linear) search finds with that tag. Such files can be created with either the —u or —a options
or by editing a tags file.

If more than one (function) definition appears on a single line, only the first definition will be
indexed.

Hewlett-Packard -2- July 2, 1985

CU(1C) CU(10)
NAME
cu - call another (HP-UX) system; terminal emulator
SYNOPSIS
cu [-sspeed] [-lline] [-h] [-t] [-q] [-ol-e] [-d] [-m] [-n] telno | systemname | dir
telno
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V

Native Language Support:

DESCRIPTION

8-bit data.

Cu calls up another HP-UX system, a terminal, or possibly a non-HP-UX system. It manages an
interactive conversation with possible transfers of ASCII files.

Cu accepts the following options and arguments:
-sspeed Specifies the transmission speed (110, 134, 150, 300, 600, 1200, 2400, 3600, 7200, 4800,

-lline

-h

-q
-t

d
-e(-0)
-m

-n

telno

9600, 19200); 300 is the default value. Most modems are either 300 or 1200 baud. Directly
connected lines may be set to a speed higher than 1200 baud.

When using a direct-connect line, the -s option has no effect. The first line which
matches the -1 option is used, and its speed is taken from L-devices.

Specifies a device name to use as the communication line. This can be used to override
searching for the first available line having the right speed. When the —1 option is used
without the —s option, the speed of a line is taken from the file /usr/lib/uucp/L—
devices. When the —1 and —s options are used simultaneously, cu will search the L—
devices file to check whether the requested speed for the requested line is available. If so,
the connection will be made at the requested speed; otherwise an error message will be
printed and the call will not be made.

The specified device is generally a directly connected asynchronous line (e.g.,
/dev/ttyab); in this case a phone number is not required but the string dir may be use
to specify a null ACU. If the specified device is associated with an auto-dialer, a phone
number must be provided.

Emulates local echo, supporting calls to other computer systems which expect terminals
to be set to half-duplex mode.

Invokes the use of ENQ/ACK handshake.

Used when dialing an ASCII terminal which has been set to auto answer. Appropriate
mapping of carriage-return to carriage-return—line—feed pairs is set.

Causes diagnostic traces to be printed.
Designates that even (odd) parity is to be generated for data sent to the remote.
Designates a direct line which has modem control.

Requests the phone number to be dialed from the user rather than taking it from the
command line.

When using an automatic dialer, this argument is the telephone number, with equal signs
inserted to wait for secondary dial tones and minus signs inserted for any other delays.

systemname

A uucp system name may be used rather than a phone number; in this case, cu will
obtain an appropriate direct line or phone number from /usr/lib/uucp/L.sys (the
appropriate baud rate is also read along with phone numbers). Cu will try each phone

Hewlett-Packard -1- July 2, 1985

CU(10)

CU(1C)

number or direct line for systemname in the L.sys file until either a connection is made
or all the entries are tried.

dir Using dir insures that cu will use the line specified by the -1 option.

After making the connection, cu runs as two processes: the transmit process reads data from the
standard input and, except for lines beginning with ~, passes it to the remote system; the receive
process accepts data from the remote system and, except for lines beginning with ~, passes it to
the standard output. Normally, an automatic DC3/DC1 protocol is used to control input from the
remote so the buffer is not overrun. Lines beginning with ~ have special meanings.

The transmit process interprets the following:

“.and “..

-1
“lemd. ..

&

“&cemd. ..

“$emd. ..
“%cd

“%take from [to]

“%put from | to |

“%break
~%nostop

%% <file

“%setpt n

“%setps Ty

Hewlett—Packard

terminate the conversation. On a hardwired line (only), ~. sends several
EOF characters to log out the session; ~.. will suppress the EOF sequence.
In general the remote hardwired machine will be unaware of the disconnect
if "..is used. . and .. do not differ for dialup connections.

escape to an interactive shell on the local system.
run ¢md on the local system (via sh -c).

just like ~! but kill the receive process, restoring it upon return from the
shell. This is useful for invoking sub-processes which read from the com-—
munication line (i.e., kermat).

run c¢md on the local system (via sh -c)
and kill the receive process, restoring it later.

run ¢md locally and send its output to the remote system.

change the directory on the local system. NOTE: “!cd will cause the
command to be run by a sub-shell, which is probably not what
was intended.

copy file from (on the remote system) to file to on the local system. If o
is omitted, the from argument is used in both places.

copy file from (on local system) to file to on remote system. If to is omit—
ted, the from argument is used in both places.

send the line ~... to the remote system. If you use cu on the remote sys—
tem to access a third remote system, send ~~. to cause the second remote
cu to exit.

transmit a BREAK to the remote system.

toggles between DC3/DC1 input control protocol and no input control.
This is useful in case the remote system is one which does not respond
properly to the DC3 and DC1 characters.

send the contents of the local file to the remote system using prompt
handshaking. The prompt sequence and timeout are specified using ~%setps
and ~%setpt, described below. While an input diversion is in progress, a
limited amount of keyboard input is buffered, and not sent to the remote
until the diversion ends. The diversion may be stopped prematurely by hit—
ting the BREAK key.

set the prompt timeout value to n seconds. The default is 2 seconds. A
value of 0 will disable the timeout.

set the handshake prompt to the characters zy. The default is DC1. The
notation "X may be used to specify a control character (i.e., "J for line
feed). The notation \" may be used to enter the ~ character. Setting the
prompt to @ (null) will cause any character to satisfy the prompt

-2- July 2, 1985

CU(10)

EXAMP

FILES

cu(1C)
sequence.
~%set this command will simply display the current value of the prompt timeout
and prompt sequence.
“%>file Divert output from the remote system to the specified file until another

“%> command is given. When an output diversion is active, typing ~%>
will terminate it, and ~%>anotherfile will terminate it and begin a new
one. The output diversion (surprisingly) remains active through a “& sub-
shell, but unpredictable results may occur if input/output diversions are
intermixed with “%take or “%put.

The receive process normally copies data from the remote system to its standard output. A line
from the remote that begins with “> initiates an output diversion to a file. The complete
sequence is:

“>[>]: file
zero or more lines to be written to file
>

Data from the remote is diverted (or appended, if >> is used) to file. The trailing “> terminates
the diversion.

The use of "%put requires stty(1) and cat(1) on the remote side. It also requires that the
current crase and kill characters on the remote system be identical to the current ones on the local
system. Backslashes are inserted at appropriate places.

The use of "%take requires the existence of echo(1) and cat(1) on the remote system. Also, stty
tabs mode should be set on the remote system if tabs are to be copied without expansion.

When cu is used on system X to connect to system Y and subsequently used on system Y to con—
nect to system Z, commands on system Y can be executed if ~” is used. For example, uname can
be executed on Z, X, and Y as follows:

uname
Z
X
“luname
Y

In general, ~ causes the command to be executed on the original machine, and ™~ causes the com-
mand to be executed on the next machine in the chain.

LES
To dial a system whose number is 9 201 555 1212 using 1200 baud:
cu -s1200 9=2015551212

If the speed is not specified, 300 is the default value.

To login to a system connected by a direct line:
cu -1 /dev/ttyXX dir

To dial a system with the specific line and a specific speed:
cu -s1200 -1 /dev/ttyXX dir

To dial a system using a specific line:
cu -1 /dev/culXX 2015551212

To use a system name:
cu YYYZZZ

/usr/lib/uucp/L.sys
/usr/lib/uucp/L-devices

Hewlett-Packard -3- July 2, 1985

CU(10) CU(10)

/usr/spool/uucp/LCK..(tty—device)
/dev/null

SEE ALSO
cat(1), ct(1C), echo(1), stty(1), uname(1), uucp(1C).
DIAGNOSTICS
Exit code is zero for normal exit, non-zero (various values) otherwise.

BUGS
Cu buffers input internally.

There is an artificial slowing of transmission by cu during the “%put operation so that loss of
data is unlikely.

Hewlett—Packard -4- July 2, 1985

CUT(1)

NAME
cut - cut

SYNOPSIS

CUT(1)

out selected fields of each line of a file

cut -clist [filel file2 ..]
cut -flist [-dchar] [-s] [filel file2 ...]

HP-UX COMPATIBILITY

Level:
Origin:

DESCRIPTION
Use cut

HP-UX/STANDARD
System III

to cut out columns from a table or fields from each line of a file; in data base parlance, it

implements the projection of a relation. The fields as specified by list can be fixed length, i.e.,
character positions as on a punched card (-c¢ option), or the length can vary from line to line and
be marked with a field delimiter character like tab (-f option). Cut can be used as a filter; if no
files are given, the standard input is used.

The meanings of the options are:

list

-clist

-flist

-d char

-8

A comma-separated list of integer field numbers (in increasing order), with optional - to
indicate ranges as in the -o option of nroff/troff for page ranges; e.g., 1,4,7; 1-3,8; -5,10
(short for 1-5,10); or 3- (short for third through last field).

The list following -c (no space) specifies character positions (e.g., -c1-72 would pass the
first 72 characters of each line).

The list following -f is a list of fields assumed to be separated in the file by a delimiter
character (see -d); e.g., -f1,7 copies the first and seventh field only. Lines with no field
delimiters will be passed through intact (useful for table subheadings), unless -s is
specified.

The character following -d is the field delimiter (-f option only). Default is tab. Space or
other characters with special meaning to the shell must be quoted.

Suppresses lines with no delimiter characters in case of -f option. Unless specified, lines
with no delimiters will be passed through untouched.

Either the -c or -f option must be specified.

Hints

Use grep(1) to make horizontal “cuts” (by context) through a file, or paste(1) to put files together
column-wise (i.e., horizontally). To reorder columns in a table, use cut and paste.

EXAMPLES
cut -d: -f1,5 /etc/passwd mapping of user ID to names
name=*who ami | cut -fl -d” "~ to set name to current login name.
DIAGNOSTICS
line too long A line can have no more than 1023 characters or fields.

bad list for ¢ /f option

no fields
SEE ALSO

grep(1),
BUGS

Missing -c¢ or -f option or incorrectly specified list. No error occurs if a line
has fewer fields than the list calls for.

The list is empty.

paste(1).

Cut(1) does not expand tabs; input should be piped through ezpand(l) if tab expansion is
required. :

Hewlett—Packard -1- July 2, 1985

CXREF (1) CXREF (1)

NAME
cxref - generate C program cross—reference

SYNOPSIS
cxref [options] files

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
Czref analyzes a collection of C files and attempts to build a cross-reference table. Czref utilizes
a special version of ¢pp to include #define’d information in its symbol table. It produces a listing
on standard output of all symbols (auto, static, and global) in each file separately, or with the -c
option, in combination. Each symbol contains an asterisk (x) before the declaring reference.

In addition to the -D, -I, -U, and -Y options (which are identical to their interpretation by
cc(1)), the following options are interpreted by czref:
-c Print a combined cross—reference of all input files.
-wnum Width option, which formats output no wider than num (decimal) columns. This option
defaults to 80 if num is not specified or is less than 51.
-o file Direct output to the named file.
-8 Operate silently; does not print input file names.
-t Format listing for 80-column width.
HARDWARE DEPENDENCIES
Series 200:

czref utilizes a special version of the C compiler front end. The size of the internal com—
piler tables can be adjusted by using the —W¢ and —N options, as described in the
manual page for ce(1).

FILES
/Jusr/lib/xcpp special version of C—preprocessor.

/usr/lib/xpass special version of C compiler front end.

SEE ALSO
ce(1).

DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you cannot compile these files, any—
way.

BUGS
Czref considers a formal argument in a #define macro definition to be a declaration of that sym-
bol. For example, a program that #includes ctype.h will contain many declarations of the vari-
able c¢. Since czref operates by running special versions of the C preprocessor and the C compiler
front end, if a file cannot be compiled, it cannot be processed by czref.

Hewlett-Packard -1- July 2, 1985

DATE(1) DATE(1)

NAME

date — print and set the date

SYNOPSIS

date | mmddhhmm[yy] | [+format |

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V

Native Language Support:
8-bit data, customs, messages

DESCRIPTION

If no argument is given, or an argument beginning with + is included, the current date and time
are printed. If an argument that is not preceded by + is included and you are super-user, the
current date and time are set to the value specified by the argument. yy is the last two digits of
the year number; the first mm is the month number; dd is the day number in the month; hh is the
hour number (one 24-hour clock cycle per day); the second mm is the minute number. The year,
month, and day can be omitted, in which case the current values are used as defaults. For exam-
ple:

date 10080045

sets the date to Oct 8, 12:45 AM in the current year (HP-UX operates in GMT). Date handles
conversions to and from local standard and daylight time.

Attempting to set the date backwards generates a warning, and requires an extra confirmation
from the (super-)user.

If an argument is present that begins with +, the argument defines the output format from date.
The argument is assumed to contain field descriptors from the list that follows, each preceded by
the character %, and, optionally, other text to be included in the output. Output format is simi-
lar to that of the first argument to printf(3S). Numeric output fields are of fixed size, and include
leading zeros when needed. Each field descriptor and the preceding % are replaced in the output
by the corresponding value from the current date and time. All other characters in the format
argument are copied to the output without alteration. To produce a % text character in the out-
put string, use %% in the format argument. The output string is always terminated with a new-
line character.

Date writes an accounting record on the file /usr/adm/wtmp.

Hewlett-Packard -1- November 15, 1985

DATE(1) DATE(1)

Field Descriptors:

insert a new-line character

insert a tab character

month of year - 01 to 12

day of month — 01 to 31

last 2 digits of year — 00 to 99

date as mm/dd/yy

hour - 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

Julian date - 001 to 366

day of week — Sunday = 0

abbreviated weekday name — Sun to Sat
full weekday name — Sunday to Saturday
abbreviated month name — Jan to Dec
Full month name — January to December
time in AM/PM notation

time zone name from TZ variable in user’s environment

N HEge TR nUY g s

The full or abbreviated month name and full or abbreviated weekday name are spelled according
to user’s native language as defined by his LANG variable (see environ(7)).

If no format argument is present, the current date and time are printed according to the
D_T_FMT string (see langinfo(3C)) which corresponds to the current value of the variable
LANG in the user’s environment. If the LANG variable is not set, ctime(3C) is used to format
the date.

HARDWARE DEPENDENCIES
Series 500:
Do not change the date and/or time in the BASIC language system if your machine also runs
HP-UX. The two operating systems’ date and time are incompatible.

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S’

generates the output:

DATE: 08/01/76
TIME: 14:45:05

FILES
/usr/adm/wtmp

SEE ALSO
ctime(3C), langinfo(3C), environ(7).

DIAGNOSTICS
No permission if you are not super-user and try to change the date;
bad conversion if the date-setting parameter is syntactically incorrect;

bad format character if the field descriptor is not valid.

Hewlett-Packard -2- November 15, 1985

DC(1)

DC(1)

NAME

dc - desk calculator
SYNOPSIS

dc [file |

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but
one may specify an input base, output base, and a number of fractional digits to be maintained.
(See be(1), a preprocessor for de that provides infix notation and a C-like syntax that implements
functions. Bc also provides reasonable control structures for programs.) The overall structure of
de is a stacking (reverse Polish) calculator. If an argument is given, input is taken from that file
until its end, then from the standard input. An end of file on standard input or the q command
stop dc. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken string of the
digits 0-9 or A-F. It may be preceded by an underscore () to input a negative number.
Numbers may contain decimal points.

+-/+%"
The top two values on the stack are added (4), subtracted (-), multiplied (), divided (/),
remaindered (%), or exponentiated ("). The two entries are popped off the stack; the
result is pushed on the stack in their place. Any fractional part of an exponent is ignored
and a warning generated.

Sz The top of the stack is popped and stored into a register named z, where £ may be any
character. If the s is capitalized, z is treated as a stack and the value is pushed on it.

1z The value in register z is pushed on the stack. The register z is not altered. All registers
start with zero value. If the 1 is capitalized, register z is treated as a stack and its top
value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged. P interprets the
top of the stack as an ASCII string, removes it, and prints it.

All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by two. If q is capi-
talized, the top value on the stack is popped and the string execution level is popped by
that value.

x treats the top element of the stack as a character string and executes it as a string of dc
commands.

X replaces the number on the top of the stack with its scale factor.

—_

puts the bracketed ASCII string onto the top of the stack. Strings may be nested by using
nested pairs of brackets.

<z >z =zl<z !>z !=

The top two elements of the stack are popped and compared. Register z is evaluated if
they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing fractional part of
the argument is taken into account, but otherwise the scale factor is ignored.

Hewlett—-Packard -1- July 2, 1985

pC(1)

f
Y

DC(1)

interprets the rest of the line as an HP-UX system command. (unless the next character is
<, >, or =, in which case appropriate relational operator above is used).

All values on the stack are popped.
The top value on the stack is popped and used as the number radix for further input.
pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for further output. See
below for notes on output base.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during multiplication,
division, and exponentiation. The interaction of scale factor, input base, and output base
will be reasonable if all are changed together.

pushes the scale factor on the top of the stack.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and executed.
are used by bc for array operations.

generates a dump of the stack.

generates debugging output for dc itself.

The input base may be any number, but only the digits 0-9 and A-F are available for input, thus
limiting the usefulness of bases outside the range 1-16. All 16 possible digits may be used in any
base; they always take their conventional values.

The output base may be any number. Bases in the range of 2-16 generate the "usual” results,
with the letters A-F representing the values from 10 through 16. Base 1 generates a string of 1’s
whose length is the value of the number. Base 0 generates a similar string consisting of d’s.
Other bases have each "digit” represented as a (multi-digit) decimal number giving the ordinal of
that digit. Each “digit” is signed for negative bases. Given the definition of output base, the
command Op will always yield "10”, regardless of the base; O1—p yields useful information about
the output base.

EXAMPLE

This example prints the first ten values of n! (n factorial):

SEE ALSO
be(1).

[la1+dsa*plal0>y]sy
Osal
lyx

DIAGNOSTICS
z 1s unimplemented

where z is an octal number.

stack empty

when there are not enough elements on the stack to do what was asked.

Out of space

when the free list is exhausted (too many digits).

Out of headers

when there are too many numbers being kept around.

Hewlett-Packard -2 - July 2, 1985

DC(1) DC(1)

Out of pushdown
when there are too many items on the stack.

Nesting Depth
when there are too many levels of nested execution.

Hewlett-Packard -3- July 2, 1985

DD(1) DD(1)

NAME

dd - convert, reblock, translate, and copy a (tape) file
SYNOPSIS

dd [option=value] ...
HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The standard
input and output are used by default. The input and output block size may be specified to take
advantage of raw physical I/O.

option values

if=file input file name; standard input is default

of=file output file name; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and obs; also, if no conver—
sion is specified, it is particularly efficient since no in—core copy need be done

cbs=n conversion buffer size

skip=n skip n input blocks before starting copy

seek=n seek n blocks from beginning of output file before copying

count=n copy only n input blocks

conv=ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC

ibm slightly different map of ASCII to EBCDIC

Icase map alphabetics to lower case

ucase map alphabetics to upper case

swab swap every pair of bytes

noerror do not stop processing on an error

sync pad every input block to ibs

., ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b, or w to
specify multiplication by 1024, 512, or 2, respectively; a pair of numbers may be separated by x to
indicate a product.

Cbs is used only if ascit or ebedic conversion is specified. In the former case cbs characters are
placed into the conversion buffer, converted to ASCII, and trailing blanks are trimmed and a
new-line is added before sending the line to the output. In the latter case ASCII characters are
read into the conversion buffer, converted to EBCDIC, and blanks added to make up an output
block of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card images per block into
the ASCII file x:

dd if=/dev/rmt/0m of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physical devices because
it allows reading and writing in arbitrary block sizes.

SEE ALSO

Hewlett—Packard -1- July 2, 1985

DD(1) DD (1)

p(1), tr(1).
DIAGNOSTICS
f+p blocks in(out) numbers of full and partial blocks read(written)

WARNING
You may experience trouble writing directly to or reading directly from a cartridge tape. For best
results, use tcio(1) as an input or output filter. For example, use

.1 dd... | tcio -ovVS 256 /dev/rct
for output to a cartridge tape, and
teio -ivS 256 /dev/rct | dd ... | ...
for input from a cartridge tape.

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256-character standard in the CACM
Nov, 1968. The ¢bm conversion, while less widely accepted as a standard, corresponds better to
certain IBM print train conventions. There is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only on conversion to
EBCDIC. These should be separate options.

Hewlett—Packard -2- July 2, 1985

DELTA (1)

NAME

DELTA (1)

delta - make a delta (change) to an SCCS file

SYNOPSIS

delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: System III
DESCRIPTION

Delta is used to permanently introduce into the named SCCS file changes that were made to the
file retrieved by get(1) (called the g-file, or generated file).

Delta makes a delta to each named SCCS file. If a directory is named, delta behaves as though
each file in the directory were specified as a named file, except that non-SCCS files (last com—
ponent of the path name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read (see WARNINGS); each line of the standard input is
taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon certain keyletters specified and
flags (see admin(1)) that may be present in the SCCS file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID

-8

-n

-glist

-m([mrlist]

Hewlett—Packard

Uniquely identifies which delta is to be made to the SCCS file. The use of
this keyletter is necessary only if two or more outstanding gets for editing
(get -e) on the same SCCS file were done by the same person (login name).
The SID value specified with the -r keyletter can be either the SID specified
on the get command line or the SID to be made as reported by the get
command (see get(1)). A diagnostic results if the specified SID is ambigu-
ous, or, if necessary and omitted on the command line.

Suppresses the issue, on the standard output, of the created delta’s SID, as
well as the number of lines inserted, deleted and unchanged in the SCCS
file.

Specifies retention of the edited g-file (normally removed at completion of
delta processing).

Specifies a list (see get(1) for the definition of list) of deltas which are to be
tgnored when the file is accessed at the change level (SID) created by this
delta.

If the SCCS file has the v flag set (see admin(1l)) then a Modification
Request (MR) number must be supplied as the reason for creating the new
delta.

If -m is not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unes-
caped new-line character terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to be the
name of a program (or shell procedure) which will validate the correctness
of the MR numbers. If a non-zero exit status is returned from MR
number validation program, delta terminates (it is assumed that the MR
numbers were not all valid).

1o July 2, 1985

DELTA(1)

DELTA (1)

-y[comment] Arbitrary text used to describe the reason for making the delta. A null

P

FILES

string is considered a valid comment.

If -y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment text.

Causes delta to print (on the standard output) the SCCS file differences
before and after the delta is applied in a diff(1) format.

All files of the form ?-file are explained in the Source Code Control System User’s Guide. The
naming convention for these files is also described there. All files below except the g-file are
created in the same directory as the s—file. The g-file is created in the user’s working directory.

g-file

p-file
q-file
x-file

z—file
d-file

Existed before the execution of delta; removed after completion of delta (unless -n
was specified).

Existed before the execution of delta; may exist after completion of delta.

Created during the execution of delta; removed after completion of delta.

Created during the execution of delta; renamed to SCCS file after completion of
delta.

Created during the execution of delta; removed during the execution of delta.
Created during the execution of delta; removed after completion of delta.

Jusr/bin/bdiff Program to compute differences between the ‘“‘gotten” file and the g-file.

DIAGNOSTICS

Use help(1) for explanations.

WARNINGS

Lines beginning with an SOH ASCII character (octal 001) cannot be placed in the SCCS file unless
the SOH is escaped. This character has special meaning to SCCS (see sccsfile(5)) and will cause

an error.

A get of many SCCS files, followed by a delta of those files, should be avoided when the get gen—
erates a large amount of data. Instead, multiple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if necessary) and -y
keyletters must also be present. Omission of these keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO

admin(1), bdiff(1), ede(1), get(1), help(1), prs(1), rmdel(1), sccsfile(4).

SCCS User’s Guide in HP-UX Concepts and Tutorials.

Hewlett—Packard

- July 2, 1985

DEROFF (1) DEROFF (1)

NAME

deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS

deroff [-mx] [-w] [files]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Deroff reads each of the files in sequence and removes all ¢roff(1) requests, macro calls, backslash
constructs, egn(1) constructs (between .EQ and .EN lines, and between delimiters), and tbi(1)
descriptions, perhaps replacing them with white space (blanks and blank lines), and writes the
remainder of the file on the standard output. Deroff follows chains of included files (.so and .nx
troff commands); if a file has already been included, a .so naming that file is ignored and a .nx
naming that file terminates execution. If no input file is given, deroff reads the standard input.

The -m option may be followed by an m, s, or . The -mm option causes the macros be inter—
preted so that only running text is output (i.e., no text from macro lines.) The -ml option forces
the -mm option and also causes deletion of lists associated with the mm macros.

If the -w option is given, the output is a word list, one “word’’ per line, with all other characters
deleted. Otherwise, the output follows the original, with the deletions mentioned above. In text,
a “word” is any string that contains at least two letters and is composed of letters, digits, amper—
sands (&), and apostrophes (7); in a macro call, however, a “word” is a string that begins with at
least two letters and contains a total of at least three letters. Delimiters are any characters other
than letters, digits, apostrophes, and ampersands. Trailing apostrophes and ampersands are
removed from “words.”

SEE ALSO

BUGS

eqn(1), nroff(1), tbi(1).

Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most such
errors result in too much rather than too little output.
The -ml option does not handle nested lists correctly.

Hewlett-Packard -1- July 2, 1985

DIFF (1) DIFF (1)

NAME

diff, diffh — differential file comparator

SYNOPSIS

diff [—efbh] filel file2
/usr/lib/diffh filel file2

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Native Language Support:
8-bit data, customs, messages.

DESCRIPTION

FILES

Diff tells what lines must be changed in two files to bring them into agreement. If filel (file2) is
—, the standard input is used. If file1 (file2) is a directory, then a file in that directory with the
name file2 (file1) is used. The normal output contains lines of these forms:

nl a n3,n4
ni,n2 d n8
nl,n2 ¢ n3,n4

These lines resemble ed commands to convert filel into file2. The numbers after the letters per-
tain to file2. In fact, by exchanging a for d and reading backward one may ascertain equally how
to convert file2 into filel. As in ed, identical pairs, where nl = n2 or n8 = nj, are abbreviated
as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by <, then
all the lines that are affected in the second file flagged by >.

The options are:

-b causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks
to compare equal.

—e produces a script of a, ¢ and d commands for the editor ed, which will recreate
file2 from filel.

—f produces a script similar to that of —e, only it is not useful with ed, and it is in

the opposite order.

-h does a fast, half-hearted job. It works only when changed stretches of text are
short and well-separated, but does work on files of unlimited length. Options —e
and —f are unavailable with —h.
Diffh is equivalent to diff —h. It must be invoked as shown above in the
synopsis, unless the PATH variable in your environment includes the directory
/usr/lib.
In connection with —e, the following shell program may help maintain multiple versions of a file.
Only an ancestral file ($1) and a chain of version-to-version ed scripts ($2,33,...) made by diff
need be on hand. A “latest version” appears on the standard output.
(shift; cat $x; echo /1,8p/) | ed — $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

/Jusr/lib/diffh for —h

SEE ALSO

cmp(1), comm(1), bdiff(1), diff3(1), diffmk(1), dircmp(1), ed(1), scesdiff(1), sdiff(1).

Hewlett-Packard -1- November 15, 1985

DIFF (1) DIFF (1)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.
BUGS
Editing scripts produced under the —e or —f option are naive about creating lines consisting of a
single period (.).
WARNINGS
Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines are different, they
will be flagged and output; although the output will seem to indicate they are the same.

Hewlett-Packard -2- November 15, 1985

DIFF3(1) DIFF3(1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 | -ex3] filel file2 file3

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with these
codes:

—==== all three files differ

==== file1 is different

====2 file2 is different

==== file3 is different
The type of change suffered in converting a given range of a given file to some other is indicated
in one of these ways:

finla Text is to be appended after line number n1 in file f, where f = 1, 2, or
3.

finl,n2c Text is to be changed in the range line n! to line n2. If n1 = n2, the
range may be abbreviated to ni.

The original contents of the range follows immediately after a ¢ indication. When the contents of
two files are identical, the contents of the lower-numbered file is suppressed.

Under the -e option, diff? publishes a script for the editor ed that will incorporate into filel all
changes between file2 and file3, i.e., the changes that normally would be flagged ==== and
====3. Option -x (~3) produces a script to incorporate only changes flagged ==== (====3).
The following command will apply the resulting script to filel.

(cat script; echo /1,8p/) | ed - filel

FILES
/tmp/d3x
/usr/lib/diff3prog
SEE ALSO
diff(1).
BUGS
Text lines that consist of a single . will defeat -e.
Tiles longer than 64K bytes will not work.

Hewlett—Packard -1- July 2, 1985

DIFFMK (1) DIFFMK (1)

NAME

diffmk - mark differences between files

SYNOPSIS

diffmk namel name2 name3

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Diffmk compares two versions of a file and creates a third file that includes ‘‘change mark” com—
mands for nroff(1) or troff(1). Namel and name2 are the old and new versions of the file.
Diffmk generates name8, which contains the lines of name2 plus inserted formatter ‘‘change
mark” (.mc) requests. When name8 is formatted, changed or inserted text is shown by | at the
right margin of each line. The position of deleted text is shown by a single *.

If anyone is so inclined, diffmk can be used to produce listings of C (or other) programs with
changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file macs contains:

pl1
A 77
.nf
.e0
ne

The .11 request might specify a different line length, depending on the nature of the program being
printed. The .eo and .nc requests are probably needed only for C programs.

If the characters | and * are inappropriate, a copy of diffmk can be edited to change them (diffmk
is a shell procedure).

SEE ALSO

BUGS

diff(1), nroff(1), troff(1).

Aesthetic considerations may dictate manual adjustment of some output. File differences involv-
ing only formatting requests may produce undesirable output, i.e., replacing .sp by .sp 2 will pro-
duce a “change mark” on the preceding or following line of output.

Although unlikely, certain combinations of formatting requests may cause change marks to either
disappear or to mark too much. Manual intervention may be required as the subtleties of all the
various formatting macro packages and preprocessors is beyond the scope of diffmk. The input to
tbl(1) cannot tolerate .mc commands. Any .mc that would appear inside a .TS range will be
silently deleted. The script can be changed if this action is inappropriate or diffmk can be run on
the output from ¢bi(1).

Diffmk uses diff(1) and thus has whatever limitations on file size and performance that diff may
impose. In particular the performance is non-linear with the size of the file, and very large files
(well over 1000 lines) may take extremely long to process. Breaking the file into smaller pieces
may be advisable.

Diffmk also uses ed(1), and if the file is too large for ed, ed error messages may be imbedded in
the file. Again, breaking the file into smaller pieces may be advisable.

Hewlett—Packard -1- July 2, 1985

DIRCMP (1) DIRCMP (1)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d | [-s] [-wn | dirl dir2
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION
Dircmp examines dirl and dir2 and generates various tabulated information about the contents of
the directories. Listings of files that are unique to each directory are generated for all the options.
If no option is entered, a list is output indicating whether the filenames common to both direc—
tories have the same contents.

-d Compare the contents of files with the same name in both directories and output a list
telling what must be changed in the two files to bring them into agreement. The list for-
mat is described in diff(1).

-s Suppress messages about identical files.
-wn Change the width of the output line to n characters. The default width is 72.

SEE ALSO
cmp(1), diff(1).

Hewlett-Packard -1- July 2, 1985

DU (1) DU (1)

NAME
du - summarize disk usage

SYNOPSIS
du [-ars | [names]

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System V

DESCRIPTION
Du gives the number of 512-byte blocks contained in all files and (recursively) directories within
each directory and file specified by the names argument. The block count includes the indirect
blocks of the file. If names is missing, . is used.

The optional argument -s causes only the grand total (for each of the specified names) to be
given. The optional argument -a causes an entry to be generated for each file. Absence of either
causes an entry to be generated for each directory only.

Du is normally silent about directories that cannot be read, files that cannot be opened, etc. The
-r option will cause du to generate messages in such instances.

A file with two or more links is only counted once.

BUGS
If the -a option is not used, non—directories given as arguments are not listed.
If there are too many distinct linked files, du will count the excess files more than once.
Files with holes in them will get an incorrect block count.
If multiple links are involved, du can give different results, depending on the order of names.

Hewlett—Packard -1- July 2, 1985

ECHO(1) ECHO(1)

NAME
echo - echo (print) arguments

SYNOPSIS
echo [arg] ..

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System V
Native Language Support:

8-bit data
DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a new-line on the standard
output. If echo’s arguments are not quoted, or are enclosed in double quotes (” ... ”), all meta—

characters are expanded according to the shell’s interpretation. Thus, echo can be used to verify
how a certain metacharacter pattern is going to be interpreted by the shell.

Echo also understands C-like escape conventions, which are listed below:
\b backspace

\c print line without new-line
\f form-feed

\n new-line

\r carriage return

\t tab

\v vertical tab

\\ backslash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal number =,
which must start with a zero.

Note that these escape sequences are first interpreted by the shell before being passed to echo.
Thus, if the arguments are unquoted, or quoted with double quotes, the backslash must be dou-
bled to prevent premature interpretation by the shell. If the arguments are enclosed in single
quotes, then the above escapes may be typed as shown.

To produce a literal backslash on the output, it must be doubled (if unquoted or quoted by double
quotes). If quoted with single quotes, a single backslash suffices.

Echo is useful for producing diagnostics in command files and for sending known data into a pipe.

SEE ALSO
sh(1).

Hewlett—Packard -1- July 2, 1985

ED(1) ED(1)

NAME
ed, red - text editor

SYNOPSIS
ed [-] [-p string] [file |

red [- | [-p string | [file]

HP-UX COMPATIBILITY
Level: HP-UX/DEVELOPMENT

Origin: System V

Native Language Support:
8-bit and 16-bit data, customs, messages.

Remarks: The decryption facilities provided by this software are under control by the United
States Government and cannot be exported without special licenses. These capabilities
are considered an HP-UX/OPTIONAL feature, and can be sold only to domestic cus—
tomers at this time.

DESCRIPTION
Ed is the standard (line-oriented) text editor. If the file argument is given, ed simulates an e
command (see below) on the named file; that is to say, the file is read into ed’s buffer so that it
can be edited. The optional - suppresses the printing of character counts by e, r, and w com-—
mands, of diagnostics from e and ¢ commands, and of the ! prompt after a !shell command. The
-p option allows the user to specify a prompt string. Ed operates on a copy of the file it is edit—
ing; changes made to the copy have no effect on the file until a w (write) command is given. The
copy of the text being edited resides in a temporary file called the buffer. There is only one
buffer.

Red is a restricted version of ed. It will only allow editing of files in the current directory. It
prohibits executing shell commands via !shell command. Attempts to bypass these restrictions
result in an error message (restricted shell).

Both ed and red support the fspec(5) formatting capability. After including a format specification
as the first line of file and invoking ed with your terminal in stty -tabs or stty tab3 mode (see
stty(1), the specified tab stops will automatically be used when scanning file. For example, if the
first line of a file contained:

<:t5,10,15 s72:>
tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72 would be
imposed. NOTE: while inputting text, tab characters when typed are expanded to every eighth
column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single-character command, possibly followed by parameters to that command. These addresses
specify one or more lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text.
This text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to
be in input mode. In this mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions are used in
addresses to specify lines and in some commands (e.g., s) to specify portions of a line that are to
be substituted. A regular expression (RE) specifies a set of character strings. A member of this
set of strings is said to be matched by the RE. The REs allowed by ed are constructed as follows:

The following one—character REs match a single character:

Hewlett-Packard -1- July 2, 1985

ED(1)

11

1.2

1.3
1.4

ED(1)

An ordinary character (not one of those discussed in 1.2 below) is a one-character RE that
matches itself.

A backslash (\) followed by any special character mentioned below is a one—character RE
that matches the special character itself. The special characters are:

a. . *, [, and \ (period, asterisk, left square bracket, and backslash, respectively), which
are always special, ezcept when they appear within square brackets ([]; see 1.4 below).

b. ~ (caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and
3.2 below), or when it immediately follows the left of a pair of square brackets ([]) (see
1.4 below).

c. 8 (currency symbol), which is special at the end of an entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is special for that RE
(for example, see how slash (/) is used in the g command, below.)

A period (.) is a one-character RE that matches any character except new-line.

A non-empty string of characters enclosed in square brackets ([]) is a one-character RE
that matches any one character in that string. If, however, the first character of the string
is a circumflex (~), the one-character RE matches any character ezcept new-line and the
remaining characters in the string. The ~ has this special meaning only if it occurs first in
the string. The minus (-) may be used to indicate a range of consecutive ASCII characters;
for example, [0-9] is equivalent to [0123456789]. The - loses this special meaning if it
occurs first (after an initial ~, if any) or last in the string. The right square bracket (])
does not terminate such a string when it is the first character within it (after an initial ~, if
any); e.g., []a-f] matches either a right square bracket (]) or one of the letters a through f
inclusive. The four characters listed in 1.2.a above stand for themselves within such a string
of characters.

The following rules may be used to construct REs from one-character REs:

2.1
2.2

2.3

2.4

2.5

2.6

A one-character RE is a RE that matches whatever the one—character RE matches.

A one-character RE followed by an asterisk (%) is a RE that matches zero or more
occurrences of the one-character RE. If there is any choice, the longest leftmost string that
permits a match is chosen.

A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that matches a range
of occurrences of the one-character RE. The values of m and n must be non-negative
integers less than 256; \{m\} matches ezactly m occurrences; \{m,\} matches at least m
occurrences; \{m,n\} matches any number of occurrences between m and n inclusive.
Whenever a choice exists, the RE matches as many occurrences as possible.

The concatenation of REs is a RE that matches the concatenation of the strings matched by
each component of the RE.

A RE enclosed between the character sequences \(and \) is a RE that matches whatever
the unadorned RE matches.

The expression \n matches the same string of characters as was matched by an expression
enclosed between \(and \) earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n—-th occurrence of \(counting from the left. For
example, the expression ~\(.*\)\1$ matches a line consisting of two repeated appearances
of the same string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a
line (or both).

3.1

A circumflex (~) at the beginning of an entire RE constrains that RE to match an ¢nitial
segment of a line.

Hewlett-Packard -2- July 2, 1985

ED(1)

ED(1)

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to match a final seg—
ment of a line.

The construction ~ entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., //) is equivalent to the last RE encountered. See also the last paragraph before
FILES below.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; the exact effect on the
current line is discussed under the description of each command. Addresses are constructed as
follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n—th line of the buffer.
4

1z addresses the line marked with the mark name character z, which must be a lower—case
letter. Lines are marked with the £ command described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching forward from the
line following the current line toward the end of the buffer and stopping at the first line
containing a string matching the RE. If necessary, the search wraps around to the begin-
ning of the buffer and continues up to and including the current line, so that the entire
buffer is searched. See also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by searching backward
from the line preceding the current line toward the beginning of the buffer and stopping at
the first line containing a string matching the RE. If necessary, the search wraps around to
the end of the buffer and continues up to and including the current line. See also the last
paragraph before FILES below.

7. An address followed by a plus sign (4) or a minus sign (-) followed by a decimal number
specifies that address plus (respectively minus) the indicated number of lines. The plus sign
may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken with respect to the
current line; e.g, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from the address, respec—
tively. As a consequence of this rule and of rule 8 immediately above, the address - refers to
the line preceding the current line. (To maintain compatibility with earlier versions of the
editor, the character ~ in addresses is entirely equivalent to -.) Moreover, trailing + and -
characters have a cumulative effect, so -~ refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon (;) stands
for the pair .,$.

Commands may require zero, one, or two addresses. Commands that require no addresses regard
the presence of an address as an error. Commands that accept one or two addresses assume
default addresses when an insufficient number of addresses is given; if more addresses are given
than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may also be separated
by a semicolon (3;). In the latter case, the current line (.) is set to the first address, and only then
is the second address calculated. This feature can be used to determine the starting line for for—
ward and backward searches (see rules 5. and 6. above). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the line corresponding to the first
address.

Hewlett-Packard -3- July 2, 1985

ED(1) ED(1)

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address; they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any command
(except e, f, r, or w) may be suffixed by 1, n, or p in which case the current line is either listed,
numbered or printed, respectively, as discussed below under the [, n, and p commands.

(.)a

<text>

The append command reads the given text and appends it after the addressed line; . is
left at the last inserted line, or, if there were none, at the addressed line. Address 0 is
legal for this command: it causes the “appended” text to be placed at the beginning of the
buffer. The maximum number of characters that may be entered from a terminal is 256
per line (including the new-line character).

(-)e

<text>

The change command deletes the addressed lines, then accepts input text that replaces
these lines; . is left at the last line input, or, if there were none, at the first line that was
not deleted.

(+5.)d
The delete command deletes the addressed lines from the buffer. The line after the last
line deleted becomes the current line; if the lines deleted were originally at the end of the
buffer, the new last line becomes the current line.

e file

The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in; . is set to the last line of the buffer. If no file name is given, the
currently-remembered file name, if any, is used (see the f command). The number of
characters read is typed; file is remembered for possible use as a default file name in sub-
sequent e, r, and w commands. If file is replaced by !, the rest of the line is taken to be
a shell (sh(1)) command whose output is to be read. Such a shell command is not
remembered as the current file name. See also DIAGNOSTICS below.

E file
The Edit command is like e, except that the editor does not check to see if any changes
have been made to the buffer since the last w command.

f file
If file is given, the file-name command changes the currently-remembered file name to
file; otherwise, it prints the currently-remembered file name.

(1,8)g/RE/command list
In the global command, the first step is to mark every line that matches the given RE.
Then, for every such line, the given command list is executed with . initially set to that
line. A single command or the first of a list of commands appears on the same line as the
global command. All lines of a multi-line list except the last line must be ended with a \;
a, ?, and ¢ commands and associated input are permitted. The . terminating input mode
may be omitted if it would be the last line of the command list. An empty command list
is equivalent to the p command. The g, G, v, and V commands are not permitted in the
command list. See also BUGS and the last paragraph before FILES below.

(1,%)G/rE/
In the interactive Global command, the first step is to mark every line that matches the
given RE. Then, for every such line, that line is printed, . is changed to that line, and
any one command (other than one of the a, ¢, i, g, G, v, and V commands) may be
input and is executed. After the execution of that command, the next marked line is

Hewlett—Packard -4 - July 2, 1985

ED(1) ED(1)

printed, and so on; a new-line acts as a null command; an & causes the re-execution of
the most recent command executed within the current invocation of G. Note that the
commands input as part of the execution of the G command may address and affect any
lines in the buffer. The G command can be terminated by an interrupt signal (ASCII DEL

or BREAK).

h
The help command gives a short error message that explains the reason for the most
recent ? diagnostic.

H
The Help command causes ed to enter a mode in which error messages are printed for all
subsequent ? diagnostics. It will also explain the previous ? if there was one. The H
command alternately turns this mode on and off; it is initially off.

()i

<text>

The insert command inserts the given text before the addressed line; . is left at the last
inserted line, or, if there were none, at the addressed line. This command differs from the
a command only in the placement of the input text. Address 0 is not legal for this com—
mand. The maximum number of characters that may be entered from a terminal is 256
per line (including the new-line character).

(+5-+1)j
The join command joins contiguous lines by removing the appropriate new-line charac—
ters. If exactly one address is given, this command does nothing.

(.)kz
The mark command marks the addressed line with name z, which must be a lower—case
letter. The address /z then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few non-printing
characters (e.g., tab, backspace) are represented by (hopefully) mnemonic overstrikes. All
other non—printing characters are printed in octal, and long lines are folded. An ! com-
mand may be appended to any other command other than e, f, r, or w.
(.,.)ma

The move command repositions the addressed line(s) after the line addressed by a.
Address 0 is legal for a and causes the addressed line(s) to be moved to the beginning of
the file. It is an error if address a falls within the range of moved lines; . is left at the last
line moved.

The number command prints the addressed lines, preceding each line by its line number
and a tab character; . is left at the last line printed. The n command may be appended
to any other command other than e, f, r, or w.

The print command prints the addressed lines; . is left at the last line printed. The p
command may be appended to any other command other than e, f, r, or w. For example,
dp deletes the current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The P command alter—
nately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done (but see DIAG-
NOSTICS below).

Hewlett—Packard -5- July 2, 1985

ED(1)

ED(1)

Q
The editor exits without checking if changes have been made in the buffer since the last w
command.

($)r file

The read command reads in the given file after the addressed line. If no file name is
given, the currently-remembered file name, if any, is used (see e¢ and f commands). The
currently-remembered file name is not changed unless file is the very first file name men-
tioned since ed was invoked. Address 0 is legal for r and causes the file to be read at the
beginning of the buffer. If the read is successful, the number of characters read is typed; .
is set to the last line read in. If file is replaced by !, the rest of the line is taken to be a
shell (sh(1)) command whose output is to be read. For example, “$r !Is” appends current
directory to the end of the file being edited. Such a shell command is not remembered as
the current file name.

(-,-)s/RE/replacement/ or

(.,.)8/RE/replacement /g or

(.,-)8/RE/replacement /n n = 1-512
The substitute command searches each addressed line for an occurrence of the specified
RE. In each line in which a match is found, all (non-overlapped) matched strings are
replaced by the replacement if the global replacement indicator g appears after the com-
mand. If the global indicator does not appear, only the first occurrence of the matched
string is replaced. If a number n appears after the command, only the n th occurrence of
the matched string on each addressed line is replaced. It is an error for the substitution
to fail on all addressed lines. Any character other than space or new-line may be used
instead of / to delimit the RE and the replacement; . is left at the last line on which a
substitution occurred. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string matching the
RE on the current line. The special meaning of & in this context may be suppressed by
preceding it by \. As a more general feature, the characters \n, where n is a digit, are
replaced by the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions are present, n is
determined by counting occurrences of \(starting from the left. When the character %
is the only character in the replacement, the replacement used in the most recent substi-
tute command is used as the replacement in the current substitute command. The %
loses its special meaning when it is in a replacement string of more than one character or
is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line in the
replacement must be escaped by preceding it by \. Such substitution cannot be done as
part of a g or v command list.

(.y.)ta
This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be 0); . is left at the last line of the copy.

The undo command nullifies the effect of the most recent command that modified any-
thing in the buffer, namely the most recent a, ¢, d, g, ¢, 7, m, r, s, ¢, v, G, or V com—
mand.

(1,8)v/RE/command list
This command is the same as the global command g except that the command list is exe—
cuted with . initially set to every line that does not match the RE.

(1,8)V/RE/
This command is the same as the interactive global command G except that the lines
that are marked during the first step are those that do not match the RE.

Hewlett—Packard -6- July 2, 1985

ED(1) ED(1)

(1,8)w file

The write command writes the addressed lines into the named file. If the file does not
exist, it is created with mode 666 (readable and writable by everyone), unless your umask
setting (see sh(1)) dictates otherwise. The currently-remembered file name is not
changed unless file is the very first file name mentioned since ed was invoked. If no file
name is given, the currently-remembered file name, if any, isﬁlsed (see e and f com-
mands); . is unchanged. If the command is successful, the number of characters written is
typed. If file is replaced by !, the rest of the line is taken to b? a shell (sh(1)) command
whose standard input is the addressed lines. Such a shell command is not remembered as
the current file name. (%)= :

The line number of the addressed line is typed; . is unchanged by this command.

!shell command .
The remainder of the line after the ! is sent to the HP-UX shell (sh(1)) to be interpreted
as a command. Within the text of that command, the unescaped character % is replaced
with the remembered file name; if a ! appears as the first character of the shell command,
it is replaced with the text of the previous shell command. Thus, !! will repeat the last
shell command. If any expansion is performed, the expanded line is echoed; . is
unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be printed. A new-line alone is
equivalent to .+1p; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its command
level. /

I
Some size limitations: 512 characters per line, 256 characters per global command list, 64 charac—
ters per file name, and 128K characters in the buffer. The limit on the number of lines depends
on the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after the last new-line.
If the closing delimiter of a RE or of a replacement string (e.g., /) would be the last character

before a new-line, that delimiter may be omitted, in which case the addressed line is printed. The
following pairs of commands are equivalent:

s/sl/s2 s/sl/s2/p b

g/s1 g/s1/p i
7s1 7517 /i
HARDWARE DEPENDENCIES
Series 500:

Certain older interface cards do not support tty —tabs or stty tab3. This precludes the
use of the fspec(4) formatting capability.
FILES

/tmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.

SEE ALSO
awk(1), ex(1), grep(1), sed(1), sh(1), stty(1), vi(1), fspec(5), regexp(7).
The ed Editor, in HP-UX Concepts and Tutorials.

DIAGNOSTICS
? for command errors.
?file for an inaccessible file.

(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed
warns the user if an attempt is made to destroy ed’s buffer via the e or ¢ commands. It prints ?

Hewlett—Packard -7- July 2, 1985

ED(1) ED(1)

and allows one to continue editing. A second e or ¢ command at this point will take effect. The -
command-line option inhibits this feature.

BUGS
A'! command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, r, and w commands cannot be used if the the editor
is invoked from a restricted shell (see sh(1)).
The sequence \n in a RE does not match a new-line character.
The ! command mishandles DEL.
Because 0 is an illegal address for the w command, it is not possible to create an empty file with
If the editor input is coming from a command file (i.e., ed file < ed-cmd-file), the editor will exit
at the first failure of a command that is in the command file.

Hewlett—Packard -8- July 2, 1985

EDIT (1) EDIT (1)

NAME

edit - text editor (variant of ex for casual users)

SYNOPSIS

edit [-r | name ...

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Edit is a variant of the text editor ez recommended for new or casual users who wish to use a
command-oriented editor. The following brief introduction should help you get started with edst.
If you are using a CRT terminal you may want to learn about the display editor .

BRIEF INTRODUCTION

To edit the contents of an existing file you begin with the command ‘“edit name” to the shell.
Edit makes a copy of the file which you can then edit, and tells you how many lines and charac—
ters are in the file. To create a new file, just make up a name for the file and try to run edit on it;
you will cause an error diagnostic, but do not worry.

Edit prompts for commands with the character ‘:’, which you should see after starting the editor.
If you are editing an existing file, then you will have some lines in edit’s buffer (its name for the
copy of the file you are editing). Most commands to edit use its “current line” if you do not tell
them which line to use. Thus if you say print (which can be abbreviated p) and hit carriage
return (as you should after all edit commands) this current line will be printed. If you delete (d)
the current line, edst will print the new current line. When you start editing, edit makes the last
line of the file the current line. If you delete this last line, then the new last line becomes the
current one. In general, after a delete, the next line in the file becomes the current line. (Delet—
ing the last line is a special case.)

If you start with an empty file or wish to add some new lines, then the append (a) command can
be used. After you give this command (typing a carriage return after the word append) edit will
read lines from your terminal until you give a line consisting of just a .”, placing these lines after
the current line. The last line you type then becomes the current line. The command insert (i)
is like append but places the lines you give before, rather than after, the current line.

Edit numbers the lines in the buffer, with the first line having number 1. If you give the com—
mand “1” then edit will type this first line. If you then give the command delete edit will delete
the first line, line 2 will become line 1, and edit will print the current line (the new line 1) so you
can see where you are. In general, the current line will always be the last line affected by a com—
mand.

You can make a change to some text within the current line by using the substitute (s) com—
mand. You say “s/old/new/” where old is replaced by the old characters you want to get rid of
and new is the new characters you want to replace it with.

The command file (f) will tell you how many lines there are in the buffer you are editing and will
say “[Modified]” if you have changed it. After modifying a file you can put the buffer text back
to replace the file by giving a write (w) command. You can then leave the editor by issuing a
quit (q) command. If you run edit on a file, but do not change it, it is not necessary (but does no
harm) to write the file back. If you try to quit from edit after modifying the buffer without
writing it out, you will be warned that there has been “No write since last change” and edit will
await another command. If you wish not to write the buffer out then you can issue another quit
command. The buffer is then irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line numbers to see lines in the file you
can make any changes you desire. You should learn at least a few more things, however, if you
are to use edit more than a few times.

Hewlett-Packard -1- . July 2, 1985

EDIT (1) EDIT (1)

The change (c¢) command will change the current line to a sequence of lines you supply (as in
append you give lines up to a line consisting of only a “.””). You can tell change to change more
than one line by giving the line numbers of the lines you want to change, i.c., “3,5change”. You
can print lines this way too. Thus *1,23p” prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last command you gave which changed the
buffer. Thus if you give a substitute command which does not do what you want, you can say
undo and the old contents of the line will be restored. You can also undo an undo command so
that you can continue to change your mind. FEdit will give you a warning message when com-
mands you do affect more than one line of the buffer. If the amount of change seems unreason-
able, you should consider doing an undo and looking to see what happened. If you decide that the
change is ok, then you can undo again to get it back. Note that commands such as write and quit
cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To look at a number of
lines hit "D (control key and, while it is held down D key, then let up both) rather than carriage
return. This will show you a half screen of lines on a CRT or 12 lines on a hardcopy terminal.
You can look at the text around where you are by giving the command “z.”. The current line
will then be the last line printed; you can get back to the line where you were before the “z.”
command by saying “““”. The z command can also be given other following characters ‘‘z-”
prints a screen of text (or 24 lines) ending where you are; “z+" prints the next screenful. If you
want less than a screenful of lines, type in "z.12” to get 12 lines total. This method of giving
counts works in general; thus you can delete 5 lines starting with the current line with the com-

mand ‘“‘delete 5.

To find things in the file, you can use line numbers if you happen to know them; since the line
numbers change when you insert and delete lines this is somewhat unreliable. You can search
backwards and forwards in the file for strings by giving commands of the form /text/ to search
forward for text or 7text? to search backward for tezt. If a search reaches the end of the file
without finding the text it wraps, end around, and continues to search back to the line where you
are. A useful feature here is a search of the form /"text/ which searches for tezt at the beginning
of a line. Similarly /text$/ searches for text at the end of a line. You can leave off the trailing /
or 7 in these commands.

The current line has a symbolic name “.””; this is most useful in a range of lines as in “.,$print”
which prints the rest of the lines in the file. To get to the last line in the file you can refer to it
by its symbolic name *“$”. Thus the command “‘$ delete” or “$d” deletes the last line in the file,
no matter which line was the current line before. Arithmetic with line references is also possible.
Thus the line “$-5” is the fifth before the last, and *.+20” is 20 lines after the present.

)

You can find out which line you are at by doing .=”. This is useful if you wish to move or copy
a section of text within a file or between files. Find out the first and last line numbers you wish
to copy or move (say 10 to 20). For a move you can then say ‘“10,20delete a” which deletes these
lines from the file and places them in a buffer named a. Edit has 26 such buffers named a through
2. You can later get these lines back by doing “put a’” to put the contents of buffer a after the
current line. If you want to move or copy these lines between files you can give an edit (e) com—
mand after copying the lines, following it with the name of the other file you wish to edit, i.e.,
‘“‘edit chapter2”. By changing delete to yank above you can get a pattern for copying lines. If the
text you wish to move or copy is all within one file then you can just say *10,20move $” for
example. It is not necessary to use named buffers in this case (but you can if you wish).

SEE ALSO
ex(1), vi(1).

Hewlett-Packard -2- July 2, 1985

ENABLE(1) ENABLE(1)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c] [-r[reason]] printers
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral Personal Computer.

Native Language Support:
8-bit file names and data, customs, messages.

DESCRIPTION
Enable activates the named printers, enabling them to print requests taken by Ip(1). Use
Ipstat(1) to find the status of printers.
Disable deactivates the named printers, disabling them from printing requests taken by lp(1). By
default, any requests that are currently printing on the designated printers will be reprinted in
their entirety either on the same printer or on another member of the same class. Use Ipstat(1) to
find the status of printers. Options useful with disable are:

-c Cancel any requests that are currently printing on any of the designated printers.

-r[reason] Associates a reason with the deactivation of the printers. This reason applies to all
printers mentioned up to the next -r option. If the -r option is not present or the -r
option is given without a reason, then a default reason will be used. Reason is
reported by Ipstat(1).

FILES

Jusr/spool/lp/*
SEE ALSO

Ip(1), Ipstat(1).

Hewlett-Packard ’ -1- July 2, 1985

ENV (1) ENV (1)

NAME

env - set environment for command execution
SYNOPSIS

env [-] [name=value | ... [command args]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V
Native Language Support:
8-bit filenames.

DESCRIPTION
Env obtains the current environment, modifies it according to its arguments, then executes the
command with the modified environment. Arguments of the form name=value are merged into
the inherited environment before the command is executed. The - flag causes the inherited
environment to be ignored completely, so that the command is executed with exactly the environ—
ment specified by the arguments.

If no command is specified, the resulting environment is printed, one name-value pair per line.

SEE ALSO
sh(1), exec(2), profile(5), environ(7).

Hewlett-Packard -1- July 2, 1985

ERR(1) Series 500 Only ERR (1)
NAME

err - report error information on last failure
SYNOPSIS

err

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD
Origin: HP

Remarks: E'rr is implemented on the Series 500 only.

DESCRIPTION

Err produces error information on the standard output for the last command which failed. The
errno, errinfo, and octal trapno values are listed.

Error information on the last child process which reported a failure is inherited across a fork and
cleared by execc. The error values are also passed back from child to parent to grandparent as
long as no errors were detected in the intermediate parent. Intervening commands which are exe—
cuted successfully have no effect on the saved error information. If a command thinks it success—
fully completed, and returns an ezit status of zero, no error information will be returned.

In general, the values reported are for a kernel intrinsic which failed, although values of errno or
errinfo which are set by libraries or commands will also be reported.

SEE ALSO

errno(2), errinfo(2), trapno(2).

WARNING

BUGS

This command may change in future releases of HP-UX. Err is intended for diagnostic purposes
only.

Information on a real error can be masked by “normal” errors caused by library routines or com-
mands. For example, the library routine isatty will generate the error ENOTTY during normal
operation.

Hewlett-Packard -1- July 2, 1985

EX(1)

NAME

EX (1)

ex - text editor

SYNOPSIS

ex [-][-v][-ttag][-r][-R][+command] [-l] name ...

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: UCB

Remarks: The decryption facilities provided by this software are under control by the United
States Government and cannot be exported without special licenses. These capabilities

are considered an HP-UX/OPTIONAL feature, and can be sold only to domestic cus—
tomers at this time.

DESCRIPTION

Lz is the root of a family of editors including: ez, edit and vi. Ez is a superset of ed, with the
most notable extension being a display editing facility. Display based editing is the focus of wvi.

If you have a CRT terminal, you may wish to use a display based editor; in this case see vi(1),
which is a command which focuses on the display editing portion of ez.

DOCUMENTATION

The Ez Reference Manual is a comprehensive and complete manual for the command mode
features of ez, but you cannot learn to use the editor by reading it. For an introduction to more
advanced forms of editing using the command mode of ez see the editing documents written by
Brian Kernighan for the editor ed; the material in the introductory and advanced documents
works also with ez.

An Introduction to Display Editing with Vi introduces the display editor vi and provides refer—
ence material on vi. The Vi Quick Reference card summarizes the commands of v7 in a useful,
functional way, and is useful with the Introduction. The vi(1) manual page can also be used as
reference.

FOR ED USERS

If you have used ed you will find that ez has a number of new features useful on CRT terminals.
Intelligent terminals and high speed terminals are very pleasant to use with vi. Generally, the
editor uses far more of the capabilities of terminals than ed does, and uses the terminal capability
data base terminfo(4) and the type of the terminal you are using from the variable TERM in the
environment to determine how to drive your terminal efficiently. The editor makes use of features
such as insert and delete character and line in its visual command (which can be abbreviated vi)
and which is the central mode of editing when using vi(1).

Ez contains a number of new features for easily viewing the text of the file. The z command gives
easy access to windows of text. Hitting "D causes the editor to scroll a half-window of text and is
more useful for quickly stepping through a file than just hitting return. Of course, the screen-
oriented visual mode gives constant access to editing context.

Ex gives you more help when you make mistakes. The undo (u) command allows you to reverse
any single change which goes astray. Ez gives you a lot of feedback, normally printing changed
lines, and indicates when more than a few lines are affected by a command so that it is easy to
detect when a command has affected more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited them so that you do
not accidentally clobber with a write a file other than the one you are editing. If the system (or
editor) crashes, or you accidentally hang up the phone, you can use the editor recover command
to retrieve your work. This will get you back to within a few lines of where you left off.

Ez has several features for dealing with more than one file at a time. You can give it a list of files
on the command line and use the next (n) command to deal with each in turn. The next com-
mand can also be given a list of file names, or a pattern as used by the shell to specify a new set

Hewlett—Packard -1- July 2, 1985

EX(1)

EX (1)

of files to be dealt with. In general, filenames in the editor may be formed with full shell
metasyntax. The metacharacter ‘%’ is also available in forming filenames and is replaced by the
name of the current file.

For moving text between files and within a file the editor has a group of buffers, named a through
2. You can place text in these named buffers and carry it over when you edit another file.

There is a command & in ez which repeats the last substitute command. In addition there is a
confirmed substitute command. You give a range of substitutions to be done and the editor
interactively asks whether each substitution is desired.

It is possible to ignore case of letters in searches and substitutions. Ez also allows regular expres—
sions which match words to be constructed. This is convenient, for example, in searching for the
word “‘edit” if your document also contains the word “editor.”

Ez has a set of options which you can set to tailor it to your liking. One option which is very
useful is the autoindent option which allows the editor to automatically supply leading white
space to align text. You can then use the "D key as a backtab and space and tab forward to align
new code easily.

Miscellaneous new useful features include an intelligent join (j) command which supplies white
space between joined lines automatically, commands < and > which shift groups of lines, and the
ability to filter portions of the buffer through commands such as sort.

The following invocation options are interpreted by ez:

- Suppress all interactive-user feedback. This is useful in processing editor scripts.

-v Invokes vi

-t tag/R Edit the file containing the tag and position the editor at its definition.

-r file Recover file after an editor or system crash. If file is not specified a list of all
saved files will be printed.

-R Readonly mode set, prevents accidentally overwriting the file.

+command Begin editing by executing the specified editor search or positioning command.

-1 LISP mode; indents appropriately for lisp code, the () {} [[and]] commands in

vt are modified to have meaning for lisp.

The name argument indicates files to be edited.

Ex States
Command Normal and initial state. Input prompted for by :. Your kill character cancels
partial command.
Insert Entered by a i and ¢. Arbitrary text may be entered. Insert is normally ter—
minated by line having only . on it, or abnormally with an interrupt.
Visual Entered by vi, terminates with Q or “\.

Hewlett-Packard -2- July 2, 1985

EX(1)

Ex command names and abbreviations

abbrev ab next n unabbrev una
append a number nu undo u
args ar unmap unm
change ¢ preserve pre version ve
copy co print P visual vi
delete d put pu write w
edit e quit q xit X
file f read re yank ya
global g recover rec window z
insert i rewind rew escape !
join j set se Ishift <
list 1 shell sh print next CR
map source so resubst &
mark ma stop st rshift >
move m substitute s scroll ‘D
Ex Command Addresses
n line n /pat next with pat
. current ?pat previous with pat
$ last -n n before z
next T,y z through y
- previous ‘T marked with z
+n n forward o previous context
% 1,$
Initializing options
EXINIT place set’s here in environment var.
$HOME/.exrc editor initialization file
set z enable option
set nozx disable option
set z=val give value val
set show changed options
set all show all options
set z?7 show value of option z

Most useful options
autoindent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmatch
showmode
slowopen
window
wrapscan
wrapmargin

Hewlett—Packard

ai
aw

nu
para

sect
SW
sm
smd
slow

ws
wim

supply indent

write before changing files
in scanning

() {} ares-exp’s

print "I for tab, $ at end
. [* special in patterns
number lines

macro names which start ...
simulate smart terminal
command mode lines
mMacro Names ...

for < >, and input "D

to) and } as typed

show insert mode in v¢
stop updates during insert
visual mode lines

around end of buffer?
automatic line splitting

EX(1)

July 2, 1985

EX (1) EX(1)

Scanning pattern formation
" beginning of line

$ end of line

. any character

\< beginning of word
\> end of word

[str] any char in str
[1str] ... not in str

[z-y] ... between z and y
*

any number of preceding

AUTHOR
Vi and ez are based on software developed by The University of California, Berkeley California,
Computer Science Division, Department of Electrical Engineering and Computer Science.

FILES
/usr/lib/ex?.?strings error messages
/usr/lib/ex?.7recover recover command
/usr/lib/ex?.7preserve preserve command
Jusr/lib/* /* describes capabilities of terminals
$HOME/ .exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr/preserve preservation directory

SEE ALSO

awk(1), ctags(1), ed(1), edit(1), grep(1), sed(1), vi(1), curses(3X), term(4), terminfo(4).

WARNINGS AND BUGS
The undo command causes all marks to be lost on lines changed and then restored if the marked
lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screen full of
output may result if long lines are present.

File input/output errors do not print a name if the command line ‘-’ option is used.
There is no easy way to do a single scan ignoring case.
The editor does not warn if text is placed in named buffers and not used before exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

Hewlett-Packard -4 - July 2, 1985

EXPAND (1) EXPAND (1)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [-tabstop | [-tabl,tab2,...tabn | [file ... |
unexpand [-a | [file ...]

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED
Origin: UCB

DESCRIPTION
Ezpand processes the named files or the standard input writing the standard output with tabs
changed into blanks. Backspace characters are preserved into the output and decrement the
column count for tab calculations. Ezpand is useful for pre-processing character files (before sort—
ing, looking at specific columns, etc.) that contain tabs.

If a single tabstop argument is given then tabs are set tabstop spaces apart instead of the default
8. If multiple tabstops are given then the tabs are set at those specific columns.

Unezpand puts tabs back into the data from the standard input or the named files and writes the
result on the standard output. By default only leading blanks and tabs are reconverted to maxi-
mal strings of tabs. If the -a option is given, then tabs are inserted whenever they would
compress the resultant file by replacing two or more characters.

Hewlett—Packard -1- July 2, 1985

EXPR(1) EXPR(1)

expr - evaluate arguments as an expression

SYNOPSIS

expr arguments

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Native Language Support:
8-bit filenames.

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is written on the standard
output. Terms of the expression must be separated by blanks. Characters special to the shell
must be escaped. Note that O is returned to indicate a zero value, rather than the null string.
Strings containing blanks or other special characters should be quoted. Integer—valued arguments
may be preceded by a unary minus sign. Internally, integers are treated as 32-bit, 2’s comple—
ment numbers.

The operators and keywords are listed below. Characters that need to be escaped are preceded by
\. The list is in order of increasing precedence, with equal precedence operators grouped within
{ } symbols.

expr \| ezpr

returns the first ezpr if it is neither null nor 0, otherwise returns the second ezpr.
expr \& ezpr

returns the first expr if neither ezpr is null or 0, otherwise returns 0.

expr { =, \>, \>=, \<, \<=, !=} expr
returns the result of an integer comparison if both arguments are integers, otherwise
returns the result of a lexical comparison (note that = and == are identical, in that both

test for equality).

expr { +,- } expr
addition or subtraction of integer-valued arguments.

expr { *, /, % } expr

multiplication, division, or remainder of the integer—valued arguments.

expr : expr
The matching operator : compares the first argument with the second argument which
must be a regular expression. Regular expression syntax is the same as that of ed(1),
except that all patterns are “anchored” (i.e., begin with *) and, therefore, ~ is not a spe—
cial character, in that context. Normally, the matching operator returns the number of
characters matched (0 on failure). Alternatively, the \(...\) pattern symbols can be
used to return a portion of the first argument.

length ezpr
The length of ezpr.

substr ezpr expr expr
Takes the substring of the first ezpr, starting at the character specified by the second
ezpr for the length given by the third ezpr.

index ezpr expr
Returns the position in the first ezpr which contains a character found in the second ezpr.

match Match is a prefix operator equivalent to the infix operator :.

Hewlett-Packard -1- July 2, 1985

EXPR(1) EXPR (1)

EXAMPLES

1. a=‘expr $a + 1+
adds 1 to the shell variable a.

2. # +Tor $a equal to either ”/usr/abc/file” or just “file”

expr $a : 2.x/\(¥\)- \| $a

returns the last segment of a path name (i.e., file). Watch out for / alone as an
argument: ezpr will take it as the division operator (see BUGS below).

3. # A better representation of example 2.

expr //%a : 2u/\(.¥\)”
The addition of the // characters eliminates any ambiguity about the division
operator and simplifies the whole expression.

4. expr $VAR : ‘.~
returns the number of characters in §VAR.

RETURN VALUE
As a side effect of expression evaluation, ezpr returns the following exit values:

0 if the expression is neither null nor 0
1 if the expression ¢s null or 0
2 for invalid expressions.
SEE ALSO
ed(1), sh(1), test(1).
DIAGNOSTICS
syntaz error for operator/operand errors
non—numeric argument if arithmetic is attempted on such a string
BUGS

After argument processing by the shell, ezpr cannot tell the difference between an operator and an
operand except by the value. If $a is an =, the command:

expr $a = /=~
looks like:
expr = = =

as the arguments are passed to ezpr (and they will all be taken as the = operator). The following
works:

expr X$a = X=

Hewlett-Packard -2- July 2, 1985

FACTOR (1) FACTOR(1)

factor, primes - factor a number, generate large primes

SYNOPSIS

factor [number |

primes [start [stop]]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

When factor is invoked without an argument, it waits for a number to be typed in. If you type in
a positive number, it factors the number and print its prime factors; each one is printed the
proper number of times. Then it waits for another number. It exits if it encounters a zero or any
non-numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to sqrt(n) and occurs when n is prime or the square of a
prime.

The largest number that can be dealt with by factor is 1.0e14.

Primes prints prime numbers between a lower and upper bound. If primes is invoked without any
arguments, it waits for two numbers to be typed in. The first number is interpreted as the lower
bound, and the second as the upper bound. All prime numbers in the resulting inclusive range are
printed.

If start is specified, all primes greater than or equal to start are printed. If both start and stop are
given, then all primes occurring in the inclusive range “start - stop” are printed.

Start and stop values must be integers represented as long integers.

If the stop value is omitted in either case, primes runs until either overflow occurs or it is stopped
by typing interrupt.

The largest number that can be dealt with by primesis 2,147,483,647.

DIAGNOSTICS

“Ouch” when the input is out of range, for garbage input, or when start is greater than stop.
g

Hewlett—Packard -1- July 2, 1985

FC(1)

NAME

FC(1)

fc, f77 - FORTRAN 77 compiler

SYNOPSIS

fc | options | files
f77 | options] files

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: HP

Native Language Support:
8-bit strings and comments.

Remarks: This manual page describes the FORTRAN 77 compiler as implemented on both the
Series 200 and Series 500 computers. On both machines it is invoked as f77 or fe.

DESCRIPTION

Fc is the HP-UX FORTRAN 77 compiler. It accepts several types of file arguments:

(1) Arguments whose names end with .f are taken to be FORTRAN 77 source files. They are
compiled, and each object file is left in the current directory in a file whose name is that of
the source, with .o substituted for .f. (The .o file will not be created for a single source
which is compiled and loaded, nor for any source which fails to compile correctly.) Series
200 Only: In the same way, arguments whose names end with .c or .s are taken to be C or
assembly source programs and are compiled or assembled, producing .o files.

(2) Series 200 Only: Arguments whose names end with .r are taken to be ratfor(1) source pro—
grams. These are first transformed by the ratfor preprocessor, and then compiled by f77
producing .o files.

(3) Arguments whose names end with .o are passed on to the linker (/d(1)) to be linked into the
final program.

Arguments can be passed to the compiler through the FCOPTS environment variable as well as
on the command line. The compiler picks up the value of FCOPTS and places its contents
before any arguments on the command line. For example,

FCOPTS=-v
export FCOPTS
fc -L prog.f

is equivalent to
fc —v -L prog.f

The following options are recognized:

-c suppress linking and produce object (.0) files from source files.

-C enable range checking (same as $OPTION RANGE ON).

-D compile debug lines (source lines with a “D” or “d” in column 1 are treated as com—
ments by default).

-g causes the compiler to generate additional information needed for the use of a sym-
bolic debugger. (This option may be incompatible with optimization.)

-12 make default size of integers and logicals INTEGER*2 and LOGICAL*2 (same
as $OPTION SHORT).

-I4 make default size of integers and logicals INTEGER*4 and LOGICAL*4. This is

the compiler’s default.

Hewlett—-Packard -1- July 2, 1985

FC(1)

-K

-1z

-L
-n
-N
-0 outfile
-onetrip
-0

Y

-q

-Q

-8

=S

-t c¢,name

~-u

-U

-V

Hewlett—Packard

FG(1)

automatically SAVE all local variables in all subprograms. This option forces static
storage for these variables in order to provide a convenient path for importing FOR-
TRAN 66 and FORTRAN 77 programs which were written to depend on static allo—
cation of memory (i.e. variables retaining their values between invocations of the
respective program units).

causes the linker to search the library named by either /lib/libz.a (tried first) or
/usr/lib/libz.a. (See ld(1).)

write a program listing to stdout during compilation.

causes the output file from the linker to be marked shared.

causes the output file from the linker to not be marked shared.
name the output file from the linker outfile instead of a.out.

execute any DO loop at least once.

invoke the assembly code optimizer.

prepare object files for profiling (see prof(1)).

causes the output file from the linker to be marked demand load.
causes the output file from the linker to not be marked demand load.

causes the output of the linker to be stripped of symbol table information (see {d(1)
and strip(1)). (This option is incompatible with symbolic debugging.)

compile the named source files and leave the assembly language output in
corresponding files whose names are suffixed with .s (no .o files are created).

substitute or insert subprocess ¢ with name where ¢ is one or more of an
implementation-dependent set of identifiers indicating the subprocess(es). Works in
two modes: 1) if ¢ is a single identifier, name represents the full path name of the
new subprocess; 2) if ¢ is a set of identifiers, name represents a prefix to which the
standard suffixes are concatenated to construct the full path names of the new sub-
processes.

For the Series 200, ¢ can take one or more of the values:

r ratfor preprocessor (standard suffix is ratfor)
¢ compiler body (standard suffix is f77pass1)
0 same as ¢

1 compiler code generator (suffix is f1)

2 optimizer (standard suffix is c2)

a assembler (standard suffix is as)

! linker (standard suffix is ld)

For the Series 500, ¢ can take one or more of the values:

¢ compiler body (standard suffix is f77comp)
0 sameas ¢
I linker (standard suffix is id)

force types of identifiers to be implicitly undeclared (same as specifying IMPLICIT
NONE; no other IMPLICIT statements are permitted).

use upper case for external names (default is lower case).

enable the verbose mode, producing a step-by-step description of the compilation
process on stderr.

-2- July 2, 1985

FC(1)

FC(1)

-w suppress warning messages (same as SOPTION WARNINGS OFF).

-w66 suppress warnings about FORTRAN 66 features used.

-W c,arg1[,arg2,...,argN]|
causes argl through argN to be handed off to subprocess ¢. The arge are of the form
~argoptionf,argvalue], where argoption is the name of an option recognized by the
subprocess and argvalue is a separate argument to argoption where necessary. The
values that ¢ can assume are those listed under the -t option, as well as d (driver
program) which has a special meaning explained below.

-Y enable 8- and 16-bit NLS support in strings and comments. In the default case, NLS
is not enabled.

The -W d option specification allows additional, implementation-specific options to be recognized
and passed through the compiler driver to the appropriate subprocesses (see -W above). For
example, on the Series 500,

-W d,-Q,dfile,—e
will send the options -Q dfile and -e through the compiler driver. Furthermore, a shorthand
notation for this mechanism can be used by prepending + to the option name; as in

+Q dfile +e

which is equivalent to the previous option expression. Note that for simplicity this shorthand is
applied to each implementation-specific option individually, and that the argvalue is no longer
separated from the argoption by a comma (see -W).

The implementation-specific options on the Series 200 are:

+b causes the compiler to generate code for floating point operations that will use float—
ing point hardware if it is installed in the computer at run—time.

+f causes the compiler to generate code for floating point operations that will use float—
ing point hardware. This code does not run unless floating point hardware is
installed.

+k this option forces dynamic storage for local arrays. If specified, arrays are subject to

the 32K byte limitation for local data space.

+N< secondary>< n>
This option adjusts the size of internal compiler tables. The compiler uses fixed size
arrays for certain internal tables. Secondary is one of the letters from the set
{@sxcnaet}, and n is an integer value. Secondary and n are not optional. The
table sizes can be re-specified using one of the secondary letters and the number n

as follows:

q maximum size of equivalence table (default = 150 table entries).

s maximum size of statement label table (default = 201 table entries).

x maximum size of external symbol table (default = 200 table entries).

c maximum size of control statements table (default = 20 table entries).

n maximum size of the hash table of symbols (default = 401 table entries).

a maximum size of external label name storage table (default = 10000 bytes).

e maximum number of expression tree nodes (default = 1000 entries).

t maximum size of external symbol storage table (default = 40000 bytes).
+s issue warnings for non-ANSI features (same as §OPTION ANSI ON).
+U upper and lower case are distinguished (case is significant). Keywords are only

recognized in lower case.

Hewlett-Packard -3- July 2, 1985

FC(1)

FC(1)

The implementation-specific options on the Series 500 are:

+e write errors to stderr.

+F causes the compiler to generate information used by various program analysis pro—
grams.

+Q dfile specify dfile as the option file.

+s issue warnings for non-ANSI features (same as $OPTION ANSI ON).

+T causes the running program to issue a procedure traceback for runtime errors.

+Ve put all COMMONS in the virtual data area.

+Vvd put all SAVE’d and initialized (DATA statement) variables in the virtual data area.

+Vf put all FORMAT strings in the virtual data area.

Any other options encountered will generate a warning to stderr.

HARDWARE DEPENDENCIES

FILES

Series 200:

The following options are not implemented:
-D, -L,-U

Series 500:

The following options are not implemented:
-0, -p, —S, ~-w66

Series 200:

file.r

file.f

file.s

file.c

file.o

a.out
/Jusr/bin/f77
/Jusr/lib/f77passl
Jlib/t1

/lib/c2
/usr/lib/libF77.a
/usr/lib/1ibl77.a
/lib/libe.a
/lib/libm.a
/lib/frt0.0
/lib/mfrt0.0
/usr/lib/end.o

Series 500:
file.f

file.o

a.out

/bin/fc
Jusr/lib/f77comp
/lib/frt0.0
/Jusr/lib/end.o
/lib/libI77.a
Jlib/1ibF77.2
/lib/libc.a

Hewlett—Packard

input file (ratfor source file)

input file (FORTRAN source file)
input file (assembly source file)

input file (C source file)

object file

linked executable output file

mother program (linked to /usr/bin/fc)
compiler pass 1

compiler pass 2

assembly code optimizer

intrinsic function library

FORTRAN I/0O library

C library; See Section 3 of this manual
math library

run-time startoff routine

startoff with profiling

symbolic debugger string buffer

input file (FORTRAN source file)
object file

linked executable output file

mother program

compiler

runtime startup

symbolic debugger string buffer
FORTRAN 1/0 library

FORTRAN math library

C library; See Section 3 of this manual

July 2, 1985

FC(1) FC(1)

/lib/libm.a math library
Jusr/tmp/x temporary files used by the compiler; names are created by tmpnam(3S).
SEE ALSO

as(1), asa(1), ec(1), 1d(1), strip(1).

FORTRAN 77 programming and reference manuals for your HP-UX system and
Structured FORTRAN 77 by Seymour Pollack.

DIAGNOSTICS
The diagnostics produced by fc are intended to be self-explanatory. If a listing is requested (-L
option), errors are written to the listing file. If no listing is being generated, errors are written to
stderr. Series 500 Only: Errors will be written to both the listing file and stderr if the -L and +e
options are both specified. Occasional messages may be produced by the linker.

BUGS
The -s option has a new meaning; use +s for non-ANSI warnings.
Series 200: The -U option has a new meaning; use +U for case sensitivity.
Series 500: The -Q dfile option has a new meaning; use 4+Q dfile to specify an option file.

Hewlett—Packard -5- July 2, 1985

FILE(1) FILE(1)

NAME
file - determine file type

SYNOPSIS
file [-c] [-f flile | [-m mfile] arg ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V
Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument
appears to be ASCII, file examines the first 512 bytes and tries to guess its language. If an argu—
ment is an executable a.out file, file will print the version stamp, provided it is greater than 0 (see
the description of the -V option in ld(1)).

File uses the file /etc/magic to identify files that have some sort of magic number, that is, any file
containing a numeric or string constant that indicates its type. Commentary at the beginning of
/etc/magic explains its format.

The options are as follows:

-c causes file to check the magic file for format errors. This validation is not normally car-
ried out for reasons of efficiency. No file classification is done under -c.

-fffile specifies that ffile is a file containing a list of the files which are to be examined. File
: then classifies each file whose name appears in ffile.

-mmfile instructs file to use an alternate magic file.

SEE ALSO
1d(1).

Hewlett—Packard -1- July 2, 1985

FIND (1)

NAME

find - find files

SYNOPSIS
find path-name-list expression

HP-UX COMPATIBILITY

Level:

Origin:

FIND(1)

HP-UX/STANDARD
System V

Native Language Support:
8-bit filenames.

DESCRIPTION
Find recursively descends the directory hierarchy for each path name in the path-name-list (i.e.,
one or more path names) seeking files that match a boolean ezpression written in the primaries
given below. In the descriptions, the argument n is used as a decimal integer where +n means
more than n, —n means less than n and n means exactly n.

—name string

—perm onum

—type ¢
—links n
—user uname
—group gname

—size n[c]

—atime n

—mtime n
—ctime n
—exec cmd

—ok cmd

—print

—cpio device

—follow

Hewlett-Packard

True if string matches the current file name. Normal shell argument syntax
may be used if escaped (watch out for [, ? and *).

True if the file permission flags exactly match the octal number onum (see
chmod(1)). If onum is prefixed by a minus sign, more flag bits (017777, see
stat(2)) become significant and the flags are compared:

(Aags&onum)==onum
True if the type of the file is ¢, where ¢ is b, ¢, d, p, f, or | for block special

file, character special file, directory, fifo (a.k.a named pipe), plain file, or sym-
bolic link respectively.

True if the file has n links.

True if the file belongs to the user uname. If uname is numeric and does not
appear as a login name in the /etc/passwd file, it is taken as a user ID.

True if the file belongs to the group gname. If gname is numeric and does not
appear in the /etc/group file, it is taken as a group ID.

True if the file is » blocks long. If n is followed by a c, the size is in characters.

True if the file has been accessed in n days. The access time of directories in
path-name-list is changed by find itself.

True if the file has been modified in n days.
True if the file has been changed in n days.

True if the executed c¢md returns a zero value as exit status. The end of ¢md
must be punctuated by an escaped semicolon. A command argument {} is
replaced by the current path name.

Like —exec except that the generated command line is printed with a question
mark first, and is executed only if the user responds by typing y.

Always true; causes the current path name to be printed.

Always true; write the current file on device in cpio (5) format (5120-byte
records). By default, find will not follow symbolic links that point to direc-
tories when this option is specified. The —follow option may be used to follow
symbolic links that point to directories.

Always true; causes find to recursively descend symbolic links that point to
directories. (This is the default when the —cpio option is not specified.) Not

November 19, 1985

FIND (1)

—nofollow

—newer file
—depth

(expression)

—inum n

—ncpiodevice

FIND (1)

all HP-UX systems support symbolic links.

Always true; causes find to not recursively descend symbolic links that point to
directories.

True if the current file has been modified more recently than the argument file.

Always true; causes descent of the directory hierarchy to be done so that all
entries in a directory are acted on before the directory itself. This can be useful
when find is used with cpio(1) to transfer files that are contained in directories
without write permission.

True if the parenthesized expression is true (parentheses are special to the shell
and must be escaped).

True if the file has inode number n.

Same as —cpio but adds the -c option to cpio.

The primaries may be combined using the following operators (in order of decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri-

maries).

3) Alternation of primaries (—o is the or operator).

HARDWARE DEPENDENCIES
Series 200/300/500:
Symbolic links are not supported on Series 200, 300, and 500 at this time.

EXAMPLES

To remove all files named a.out or *.0 that have.not been accessed for a week:

find / \(-name a.out —o —name /+.of \) —atime +7 —exec rm {} \;

Note that the spaces delimiting the escaped parentheses are required.

FILES

/etc/passwd, /etc/group

SEE ALSO

cpio(1), sh(1), test(1), stat(2), Istat(2), cpio(5), fs(5).

Hewlett-Packard

-2-) November 19, 1985

-

FINDMSG (1) FINDMSG (1)

NAME

findmsg, dumpmsg - create message catalog file for modification
SYNOPSIS

findmsg file ...

dumpmsg file ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP
DESCRIPTION
Findmsg extracts messages from C program source file and writes them to the standard output,

along with set information. The source file lines from which the string literals are to be extracted
must have nl_msg and ” in the same line. There are four cases to be handled:

printf(nl_msg(1, “message”));
#define NLSMESS “message” /* nl_msg 1 */

char nlsmess[] = “message” /* nl_msg 1 */
char *nlsmess|] = {
“message 1", /*nl_msg1 */
“message 2", /¥ nl_msg 2 */
0

h
In each of the latter three cases, there are executable lines elsewhere which contain nl_msg in an
executable form, along with the necessary reference.

Findmsg derives message catalog set numbers from source lines which appear as:
#define NL_SETN 1
Typically a single such line will appear toward the beginning of the source file.

Dumpmsg dumps out messages which are stored in a message catalog file which was generated by
the gencat(1) command.

The output of either command is in the form:

$set 1
1 messagel\n
2 message two\n

Each message can then be changed as necessary, then processed by the gencat(1) command.

SEE ALSO
findstr(1), gencat(1), insertmsg(1), getmsg(3C).

BUGS
For use with gencat(1), the output of findmsg must have the $set line appear first in its output.
Thus the)

#define NL_SETN 1
must appear before any messages.

Only one message may appear on each physical line. Each message must appear completely on
one line along with the nl_msg token.

Hewlett-Packard -1- November 19, 1985

FINDSTR (1) FINDSTR (1)

NAME

findstr - find strings for inclusion in message catalogs
SYNOPSIS

findstr file ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: HP
DESCRIPTION
Findstr examines files of C source code for uncommented string constants, which it places along

with the surrounding quotes on the standard output, preceding each by the file name, start posi-
tion, and length. This information will be used by insertmsg.

SEE ALSO
insertmsg(1).

Hewlett-Packard -1- November 19, 1985

//\\ .

FIXMAN (1) FIXMAN (1)

NAME
fixman - fix manual pages for faster viewing with man(1)

SYNOPSIS
fixman

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: HP

DESCRIPTION
This shell script processes all ordinary files under /usr/man/cat* to unexpand all possible spaces
to tabs and remove all {character, backspace} pairs. Such pairs usually exist to cause overstriking
or underscoring for printer output. They only slow down man(1), and use up significant amounts

of disc space. The script should be run after running catman(l) to rebuild all cat-able manual
entries from pre-nroff forms.

The script does not remove duplicate blank lines, so all files remain a multiple of one page (66
lines) long and can still be passed directly to Ip(1). (Note that man(1) normally uses rmnl(1) to
accomplish this removal.)

To insure success, the script should be run by the super-user. It can take two to three hours to
complete. As a side-effect, file ownerships and permissions may be changed.

FILES
/Jusr/man/cat*
Directories containing post-nroff versions of manual entries.
SEE ALSO
catman(1), chmod(1), expand(1), Ip(1), man(1l), mv(1), rmnl(1), sed(1).

Hewlett-Packard -1- July 9, 1985

FOLD (1) FOLD (1)

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [-width] [file ... |

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: UCB

DESCRIPTION
Fold is a filter which will fold the contents of the specified files, or the standard input if no files
are specified, breaking the lines to have maximum width width. The default for width is 80. Width
should be a multiple of 8 if tabs are present, or the tabs should be expanded using ezpand(1)
before coming to fold.

SEE ALSO
expand(1)

BUGS
If underlining is present it may be messed up by folding.

Hewlett—Packard -1- July 9, 1985

GENCAT(1) GENCAT(1)

NAME

gencat - generate a formatted message catalog file
SYNOPSIS

gencat catfile file ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: HP
Native Language Support:
8-bit and 16-bit data, customs, messages

DESCRIPTION
Gencat merges message source files into a formatted catfile which can be accessed by getmsg(3C).
If catfile does not exist it will be created. If catfile does exist its messages will be included in the
new catfile unless set and message numbers collide, in which case the new supersedes the old. The
files consist of sets of messages along with comments.

The format for message source in the files has been designed to include compatibility with MPE
and RTE. A line which begins with a dollar sign followed by a blank denotes a comment and
may appear anywhere in a file.

A message set consists of a line of the form
$setn [comment)

followed by lines of the form
m message—text

where n denotes the set number (1-255) and m the message number (1-32767). Typically the set
number will be used to identify the language, while the message number denotes which string
from a given program is wanted. Message-text is a C string, including white space and ‘\’
escapes, without the surrounding quotes. A $set line may optionally contain comment text fol-
lowing the set number. Set numbers and message numbers must be in ascending order but need
not be contiguous.

If a message source line has a number but no text then the existing message with this number is
deleted from the catalog.

To delete an entire message set the directive
$DELSET set_name
may be placed at the beginning of a line between sets.

SEE ALSO
findmsg(1), insertmsg(1), getmsg(3C).

Hewlett-Packard -1- July 9, 1985

GET(1) GET(1)

NAME
get - get a version of an SCCS file
SYNOPSIS
gft [-rSID] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e] [I[p]] [-p] [-m] [-n] [-s] [-b] [-g] [-t]
e ...

HP-UX COMPATIBILTY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Get generates an ASCII text file from each named SCCS file according to the specifications given
by its keyletter arguments, which begin with -. The arguments may be specified in any order, but
all keyletter arguments apply to all named SCCS files. If a directory is named, get behaves as
though each file in the directory were specified as a named file, except that non-SCCS files (last
component of the path name does not begin with s.) and unreadable files are silently ignored. If
a name of - is given, the standard input is read; each line of the standard input is taken to be the
name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are silently
ignored.

The generated text is normally written into a file called the g-file whose name is derived from the
SCCS file name by simply removing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one SCCS file is to be pro-
cessed, but the effects of any keyletter argument applies independently to each named file.

-rSID The SCCS IDentification string (SID) of the version (delta) of an SCCS file to be
retrieved. Table 1 below shows, for the most useful cases, what version of an SCCS file
is retrieved (as well as the SID of the version to be eventually created by delta(1) if the
-e keyletter is also used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:
YY[MM[DD[HHMM(SS]]J]]

No changes (deltas) to the SCCS file which were created after the specified cutoff
date-time are included in the generated ASCII text file. Units omitted from the date-
time default to their maximum possible values; that is, -c7502 is equivalent to
-¢750228235959. Any number of non-numeric characters may separate the various 2
digit pieces of the cutoff date-time. This feature allows one to specify a cutoff date in
the form: “-¢77/2/2 9:22:25”. Note that this implies that one may use the %E%
and %U% identification keywords (see below) for nested gets within, say the input to a
send(1C) command:

“lget "-c%E% %U%” s.file

-e Indicates that the get is for the purpose of editing or making a change (delta) to the
SCCS file via a subsequent use of delta(1). The -e keyletter used in a get for a particu—
lar version (SID) of the SCCS file prevents further gets for editing on the same SID until
delta is executed or the j (joint edit) flag is set in the SCCS file (see admin(1)). Con-
current use of get -e for different SIDs is always allowed.

If the g-file generated by get with an -e keyletter is accidentally ruined in the process
of editing it, it may be regenerated by re-executing the get command with the -k
keyletter in place of the -e keyletter.

SCCS file protection specified via the ceiling, floor, and authorized user list stored in
the SCCS file (see admin(1)) are enforced when the -e keyletter is used.

-b Used with the -e keyletter to indicate that the new delta should have an SID in a new
branch as shown in Table 1. This keyletter is ignored if the b flag is not present in the

Hewlett-Packard -1- July 9, 1985

GET(1)

-ilist

-xlist

-k

-1[p]

-P

-S

-m

-n

-g

-t

-aseq-no.

GET(1)

file (see admin(1)) or if the retrieved delta is not a leaf delta. (A leaf delta is one that
has no successors on the SCCS file tree.)
Note: A branch delta may always be created from a non-leaf delta.

A list of deltas to be included (forced to be applied) in the creation of the generated
file. The list has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID - SID

SID, the SCCS Identification of a delta, may be in any form shown in the ‘““‘SID
Specified” column of Table 1. Partial SIDs are interpreted as shown in the “SID
Retrieved” column of Table 1.

A list of deltas to be excluded (forced not to be applied) in the creation of the gen—
erated file. See the -i keyletter for the list format.

Suppresses replacement of identification keywords (see below) in the retrieved text by
their value. The -k keyletter is implied by the -e keyletter.

Causes a delta summary to be written into an [-file. If -lp is used then an I-file is not
created; the delta summary is written on the standard output instead. See FILES for
the format of the I-file.

Causes the text retrieved from the SCCS file to be written on the standard output. No
g-file is created. All output which normally goes to the standard output goes to file
descriptor 2 instead, unless the -s keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output. However, fatal error
messages (which always-go to file descriptor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be preceded by the SID of the
delta that inserted the text line in the SCCS file. The format is: SID, followed by a
horizontal tab, followed by the text line.

Causes each generated text line to be preceded with the %M% identification keyword
value (see below). The format is: %M% value, followed by a horizontal tab, followed
by the text line. When both the -m and -n keyletters are used, the format is: %M%
value, followed by a horizontal tab, followed by the -m keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It is primarily used to gen-
erate an [-file, or to verify the existence of a particular SID.

Used to access the most recently created (“‘top’”) delta in a given release (e.g., -rl), or
release and level (e.g., -r1.2).

The delta sequence number of the SCCS file delta (version) to be retrieved (see
scesfile(5)). This keyletter is used by the comb(1) command; it is not a generally use-
ful keyletter, and users should not use it. If both the -r and -a keyletters are specified,
the -a keyletter is used. Care should be taken when using the -a keyletter in conjunc—
tion with the -e keyletter, as the SID of the delta to be created may not be what one
expects. The -r keyletter can be used with the -a and -e keyletters to control the
naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being accessed and
with the number of lines retrieved from the SCCS file.

If the -e keyletter is used, the SID of the delta to be made appears after the SID accessed and
before the number of lines generated. If there is more than one named file or if a directory or
standard input is named, each file name is printed (preceded by a new-line) before it is processed.
If the -i keyletter is used included deltas are listed following the notation “Included”; if the -x

Hewlett—Packard

-2~ July 9, 1985

GET(1)

GET(1)

keyletter is used, excluded deltas are listed following the notation “Excluded”.

k%
*kk

3k

TABLE 1. Determination of SCCS Identification String
SID* -b Keyletter Other SID SID of Delta
Specified ~ Usedt Conditions Retrieved to be Created
none} no R defaults to mR mR.mL mR.(mL+1)
nonet yes R defaults to mR ~ mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1H**
R no R =mR mR.mL mR.(mL+1)
R yes R >mR mR.mL mR.mL.(mB+1).1
R yes R =mR mR.mL mR.mL.(mB+1).1
R < mR and .
R - R does not exist hR.mL bR.mL.(mB+1).1
Trunk succ.#
R - in release > R R.mL R.mL.(mB+1).1
and R exists
R.L no No trunk succ. R.L R.(L+1)
RL yes No trunk succ. R.L R.L.(mB+1).1
Trunk succ.
RL - in relesse 5 R RL R.L.(mB+1).1
R.LB no No branch succ. RLB.mS R.L.B.(mS+1)
R.L.B yes No branch succ. R.LB.mS R.L.(mB+1).1
R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+1)
R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1
R.L.B.S - Branch succ. R.L.B.S R.L.(mB+1).1

“R”, “L”, “B”, and “S” are the ‘“‘release”, “level”’, “‘branch”, and ‘‘sequence” components
of the SID, respectively; “‘m’” means ‘“maximum’. Thus, for example, “R.mL" means “the
maximum level number within release R”; “R.L.(mB+1).1” means “the first sequence
number on the new branch (i.e., maximum branch number plus one) of level L within release
R”. Note that if the SID specified is of the form *“R.L”, “R.L.B”, or “R.L.B.S”, each of the
specified components must exist.

“hR” is the highest ezisting release that is lower than the specified, nonezistent, release R.
This is used to force creation of the first delta in a new release.

Successor.

The -b keyletter is effective only if the b flag (see admin (1)) is present in the file. An entry
of - means ‘“‘irrelevant”.

This case applies if the d (default SID) flag is not present in the file. If the d flag s present
in the file, then the SID obtained from the d flag is interpreted as if it had been specified on
the command line. Thus, one of the other cases in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the SCCS file by replacing
identification keywords with their value wherever they occur. The following keywords may be
used in the text stored in an SCCS file:

Keyword Value
%M% Module name: either the value of the m flag in the file (see admin(1)), or if absent,

%1%

the name of the SCCS file with the leading s. removed.
SCCS identification (SID) (%R%.%L%.%B%.%S%) of the retrieved text.

%R% Release.
%L% Level.
%B% Branch.

Hewlett-Packard -3- July 9, 1985

GET(1) GET(1)

%S% Sequence.

%D% Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y % Module type: value of the t flag in the SCCS file (see admin(1)).

%F% SCCs file name.

%P% Fully qualified SCCS file name.

%Q% The value of the q flag in the file (see admin(1)).

%C% Current line number. This keyword is intended for identifying messages output by the
program such as “this shouldn’t have happened” type errors. It is not intended to be
used on every line to provide sequence numbers.

%Z% The 4-character string @(#) recognizable by what(1).

%W% A shorthand notation for constructing what(1) strings for HP-UX System program files.
%BW% = %Z%%M% <horizontal-tab>%I1%

%A% Another shorthand notation for constructing what(1) strings for non-HP-UX System
program files. %A% = %Z%%Y% %M% %1%%Z%

FILES
Several auxiliary files may be created by get, These files are known generically as the g-file, [-file,
p-file, and z—file. The letter before the hyphen is called the tag. An auxiliary file name is formed
from the SCCS file name: the last component of all SCCS file names must be of the form
s.module-name, the auxiliary files are named by replacing the leading s with the tag. The g-file
is an exception to this scheme: the g-file is named by removing the s. prefix. For example,
s.xyz.c, the auxiliary file names would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current directory (unless the -p
keyletter is used). A g-file is created in all cases, whether or not any lines of text were generated
by the get. It is owned by the real user. If the -k keyletter is used or implied its mode is 644;
otherwise its mode is 444. Only the real user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in generating the retrieved text.
The I-file is created in the current directory if the -1 keyletter is used; its mode is 444 and it is
owned by the real user. Only the real user need have write permission in the current directory.

Lines in the [-file have the following format:

a. A blank character if the delta was applied;
* otherwise.
b. A blank character if the delta was applied or wasn’t applied and ignored;
* if the delta wasn’t applied and wasn’t ignored.
c. A code indicating a “special” reason why the delta was or was not applied:
“I’*: Included.
“X”: Excluded.
“C”: Cut off (by a -c keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
Blank.
Login name of person who created delta.

S Ee e A

The comments and MR data follow on subsequent lines, indented one horizontal tab
character. A blank line terminates each entry.

Hewlett—Packard -4 - July 9, 1985

GET(1) GET (1)

The p—file is used to pass information resulting from a get with an -e keyletter along to delta. Its
contents are also used to prevent a subsequent execution of get with an -e keyletter for the same
SID until delta is executed or the joint edit flag, j, (see admin(1)) is set in the SCCS file. The p-
file is created in the directory containing the SCCS file and the effective user must have write per—
mission in that directory. Its mode is 644 and it is owned by the effective user. The format of the
p-file is: the gotten SID, followed by a blank, followed by the SID that the new delta will have
when it is made, followed by a blank, followed by the login name of the real user, followed by a
blank, followed by the date-time the get was executed, followed by a blank and the -i keyletter
argument if it was present, followed by a blank and the -x keyletter argument if it was present,
followed by a new-line. There can be an arbitrary number of lines in the p—file at any time; no
two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the
binary (2 bytes) process ID of the command (i.e., get) that created it. The z-file is created in the
directory containing the SCCS file for the duration of get. The same protection restrictions as
those for the p-file apply for the z—file. The z-file is created mode 444.

SEE ALSO

admin(1), delta(1), help(1), prs(1), what(1), scesfile(4).
DIAGNOSTICS

Use help(1) for explanations.

BUGS
If the effective user has write permission (either explicitly or implicitly) in the directory containing
the SCCS files, but the real user doesn’t, then only one file may be named when the -e keyletter is
used. Some list sequences will not work properly with the —i and/or —x options.

Hewlett-Packard -5- July 9, 1985

GETOPT (1)

NAME
getopt - parse command options

SYNOPSIS
getopt optstring args

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System V

Native Language Support:
8-bit filenames.

DESCRIPTION

GETOPT (1)

Getopt is used to break up options in command lines for easy parsing by shell procedures and to
check for legal options. Opistring is a string of recognized option letters (see getopt (3C)); if a
letter is followed by a colon, the option is expected to have an argument which may or may not
be separated from it by white space. The special option -- is used to delimit the end of the
options. If it is used explicitly, getopt will recognize it; otherwise, getopt will generate it; in either
case, getopt will place it at the end of the options. The positional parameters ($1 $2 ...) of the
shell are reset so that each option is preceded by a - and is in its own positional parameter; each

option argument is also parsed into its own positional parameter.

The most common use of getopt is in the shell’s set command (see the example below). There,
getopt converts the command line to a more easily parsed form. Getopt writes the modified com—

mand line to the standard output.

EXAMPLE

The following code fragment shows how one might process the arguments for a command that can

take the options a or b, as well as the option o, which requires an argument:

set -- ‘getopt abo: $x°

if[$?!1=0]
then
echo $USAGE
exit 2
fi
for i in $x
do
case $i in
-a | -b)
-0)
-)
esac
done

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -o arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO

Hewlett—Packard

FLAG=S$i; shift;;
OARG=$2; shift 2;;
shift; break;;

July 9, 1985

GETOPT (1) GETOPT (1)

sh(1), getopt(3C).

DIAGNOSTICS
Getopt prints an error message on the standard error when it encounters an option letter not
included in optstring.

Hewlett—Packard -2- July 9, 1985

GETPRIVGRP (1) Series 200/300 Only GETPRIVGRP (1)

NAME
getprivgrp - get special attributes for group

SYNOPSIS
getprivgrp [group-name]

HP-UX COMPATIBILITY
Level: HP-UX
Origin: HP

DESCRIPTION
Getprivgrp lists the access privileges of privileged groups set by setprivgrp(im). When a group
name is supplied access privileges are listed for that group only. Otherwise, access privileges are
listed for all privileged groups of which the caller is a member. The super—user is considered to be
a member of all groups. Access privileges include rtprio and miock.

SEE ALSO
getprivgrp(2), setprivgrp(1m), privgrp(5).

Hewlett—Packard -1- July 9, 1985

GREP (1) GREP (1)

grep, egrep, fgrep - search an ASCII file for a pattern

SYNOPSIS

grep [options | expression [files]
egrep [options | [expression | [files]

fgrep | options] [strings | [files]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Commands of the grep family search the input files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output. Grep patterns are limited
regular ezpressions in the style of ed(1); it uses a compact non—deterministic algorithm. Egrep
patterns are full regular ezpressions; it uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is fast and compact. The following options
are recognized:

-v All lines but those matching are printed.
-X (Exact) only lines matched in their entirety are printed (fgrep only).

-c Only a count of matching lines is printed.
-i Ignore upper/lower case distinction during comparisons (grep only).
-1 Only the names of files with matching lines are listed (once), separated by new-lines.

-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was found. This is sometimes useful
in locating disk block numbers by context.

-8 The error messages produced for nonexistent or unreadable files are suppressed (grep only).

-e ezrpression
Same as a simple ezpression argument, but useful when the ezpression begins with a -
(does not work with grep).

-f file The regular ezpression (egrep) or strings list (fgrep) is taken from the file.

In all cases, the file name is output if there is more than one input file. Care should be taken
when using the characters $, =, [, °, |, (,), and \ in ezpression, because they are also meaningful
to the shell. It is safest to enclose the entire ezpression argument in single quotes /.../.

Fgrep searches for lines that contain one of the strings, each of which is separated from the next
by a new-line.

Egrep accepts regular expressions as in ed(1), except for \(and \), with the addition of:

1. A regular expression followed by + matches one or more occurrences of the regular expres—
sion.

2. A regular expression followed by ? matches 0 or 1 occurrences of the regular expression.

3. Two regular expressions separated by | or by a new-line match strings that are matched by
either.

4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is [], then = ? +, then concatenation, then | and new-line.

EXAMPLES

The following example searches two files, finding all lines containing occurrences of any of four
strings:

fgrep “if

then

else

Hewlett—Packard -1- July 9, 1985

GREP (1) GREP (1)

fi” scriptl script2

Note that the single quotes are necessary to tell fgrep when the strings have ended and the file
names have begun.

This example searches for a new-line in a file:
grep -v “\.” filel

The -v option causes grep to print those lines that do not match the expression. Since a new-line
cannot be matched with dot, only lines containing a new-line are printed.

SEE ALSO

ed(1), sed(1), sh(1).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files (even if
matches were found).

Ideally there should be only one grep, but we do not know a single algorithm that spans a wide
enough range of space-time tradeoffs.

Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ is defined in
/usr/include/stdio.h.)

Egrep does not recognize ranges, such as [a-z], in character classes.

Grep finds lines in the input file by searching for a new-line. Thus, if there is no new-line at the
end of the file, grep will ignore the last line of the file.

If there is a line with embedded nulls, grep will only match up to the first null; if it matches, it
will print the entire line.

Hewlett-Packard -2- July 9, 1985

GROUPS (1) GROUPS(1)

NAME
groups — show group memberships

SYNOPSIS
groups [[-p] [-g] [-1] user]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: UCB

DESCRIPTION
The groups command shows the groups to which you or the optionally specified user belong. If
invoked with no arguments, groups prints the current access list returned by getgroups(2). Each
user belongs to a group specified in the password file /etc/passwd and possibly to other groups as
specified in the files /etc/group and /etc/logingroup. A user is granted the permissions of those
groups specified in /etc/passwd and /etc/logingroup at login time. The permissions of the groups
specified in /etc/group are normally available only with the use of newgrp(1). If a user name is
specified with no options, groups prints the union of all these groups. The -p, -g, and -1 options
limit the list which is printed to only those groups specified in /etc/passwd, /etc/group, and
/etc/logingroup, respectively.

SEE ALSO
id(1), newgrp(1), getgroups(2), initgroups(3c), group(5)

FILES
/etc/passwd, /etc/group, /ete/logingroup

Hewlett-Packard -1- November 18, 1985

HEAD (1) HEAD (1)

NAME
head - give first few lines

SYNOPSIS
head [-count] [file ...]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB
Remarks: Not supported on the Integral Personal Computer.
DESCRIPTION

This filter gives the first count lines of each of the specified files, or of the standard input. If
count is omitted it defaults to 10.

SEE ALSO
tail(1).

Hewlett—-Packard -1- July 9, 1985

HELP (1) HELP (1)

NAME
help - ask for help

SYNOPSIS
help [args]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System III

DESCRIPTION
Help finds information to explain a message from a command or explain the use of a command.
Zero or more arguments may be supplied. If no arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally appear in parentheses following
messages) or command names, of one of the following types:

type 1 Begins with non-numerics, ends in numerics. The non-numeric prefix is
usually an abbreviation for the program or set of routines which produced
the message (e.g., ge5, for message 5 from the get command).

type 2 Does not contain numerics (as a command, such as get)
type 3 Is all numeric (e.g., 26)

The response of the program will be the explanatory information related to the argument, if there
is any.

When all else fails, try “help stuck”.

FILES

/usr/lib/help directory containing files of message text.

/usr/lib/help/helploc file containing locations of help files not in /usr/lib/help.
DIAGNOSTICS

Use help(1) for explanations.

BUGS
Only SCCS and a very few other commands currently use help.

Hewlett-Packard -1- July 9, 1985

o

HOSTNAME (1) HOSTNAME (1)

NAME
hostname - set or print name of current host system

SYNOPSIS
hostname | nameofhost]
HP-UX COMPATABILITY
Level: HP-UX/STANDARD
Origin: UCB
DESCRIPTION
The hostname command prints the name of the current host, as given in the uname system call.
The super-user can set the hostname by giving an argument; this is usually done in the startup
script /etc/re.
SEE ALSO
uname(1), gethostname(2), sethostname(2), uname(2).

Hewlett—Packard -1- July 9, 1985

HP(1)

NAME

HP (1)

hp - handle special functions of HP 2640 and 2621-series terminals

SYNOPSIS

hp [-e][-m]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System IIT

Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

Hp supports special functions of the Hewlett—Packard 2640- and 2621- series of terminals, with
the primary purpose of producing accurate representations of most nroff(1) output. A typical use
is:

nroff -h files ... | hp

Regardless of the hardware options on your terminal, hp tries to do sensible things with underlin—
ing and reverse line—feeds. If the terminal has the “display enhancements’ feature, subscripts and
superscripts can be indicated in distinct ways. If it has the ‘“‘mathematical-symbol” feature,
Greek and other special characters can be displayed.

The options are as follows:

-e It is assumed that your terminal has the “display enhancements’ feature, and so maximal
use is made of the added display modes. Overstruck characters are presented in the
Underline mode. Superscripts are shown in Half-bright mode, and subscripts in Half-
bright, Underlined mode. If this flag is omitted, hp assumes that your terminal lacks the
‘““display enhancements” feature. In this case, all overstruck characters, subscripts, and
superscripts are displayed in Inverse Video mode, i.e., dark-on-light, rather than the
usual light-on—-dark.

-m Requests minimization of output by removal of new-lines. Any contiguous sequence of 3
or more new-lines is converted into a sequence of only 2 new-lines; i.e., any number of
successive blank lines produces only a single blank output line. This allows you to retain
more actual text on the screen.

With regard to Greek and other special characters, hp provides the same set as does 300(1),
except that *“not” is approximated by a right arrow, and only the top half of the integral sign is
shown. The display is adequate for examining output from negn(1).

DIAGNOSTICS

“line too long” if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, and 2 for all errors.

SEE ALSO

BUGS

300(1), col(1), neqn(1), greek(1), nroff(1), tbl(1).

An “overstriking sequence” is defined as a printing character followed by a backspace followed by
another printing character. In such sequences, if either printing character is an underscore, the
other printing character is shown underlined or in Inverse Video; otherwise, only the first printing
character is shown (again, underlined or in Inverse Video). Nothing special is done if a backspace
is adjacent to an ASCII control character. Sequences of control characters (e.g., reverse line—feeds,
backspaces) can make text ‘‘disappear’’; in particular, tables generated by tbl(1) that contain
vertical lines will often be missing the lines of text that contain the “foot’” of a vertical line, unless
the input to kp is piped through col(1).

Although some terminals do provide numerical superscript characters, no attempt is made to
display them.

Hewlett-Packard -1- July 9, 1985

HYPHEN (1) HYPHEN (1)

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen | files |

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V
Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION
Hyphen finds all the hyphenated words ending lines in files and prints them on the standard out—
put. If no arguments are given, the standard input is used; thus, hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nroff hyphenation in teztfile.

mm textfile | hyphen
SEE ALSO
mm(1), nroff(1).

BUGS
Hyphen cannot cope with hyphenated dtalic (i.e., underlined) words; it will often miss them com-
pletely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than spurious extra output.

Hewlett—-Packard -1- July 9, 1985

ID(1) ID(1)

NAME
id - print user and group IDs and names

SYNOPSIS
id
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
DESCRIPTION

Id writes a message on the standard output giving the user and group IDs and the corresponding
names of the invoking process. If the effective and real IDs do not match, both are printed.

SEE ALSO
logname(1), getgid(2), getuid(2).

Hewlett—Packard -1- July 2, 1985

INSERTMSG (1) INSERTMSG (1)

NAME

insertmsg - use findstring output to insert calls to getmsg

SYNOPSIS

insertmsg stringlist

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: HP

DESCRIPTION

Insertmsg examines the file stringlist, which is assumed to be the output of findstr minus the
strings which do not need to be localized and have been removed by editing. Insertmsg first
places the line

#include <msgbuf.h>

at the beginning of each file named in stringlist. Then for each line in stringlist , it surrounds the
string with an expression of the form

(*getmsg(nl_fd, nl_set__num, nl_msg_num, nl_msg_buf,
NL_MBUFLN) =="\0" ? “saved string” : nl_msg_buf)

which evaluates to the original string if the translation cannot be retrieved. The string buffer and
other “nl__" variables and constants are defined in <msgbuf.h>. Insertmsg places the modified
source on a file nl_zz.c where the original file name was zz.c. The user must then hand edit the
file to insert a call

nl_catopen(”/*appropriate message catalog*/");
and assign the proper value to nl_set_num.

Insertmsg also places on the standard output a file which can be used as input to gencat. Again,
hand editing is required to define the $set number to match nl_set_num. Messages will
automatically be numbered from 1 upward, in the order that they appear in stringlist. The same
number will also be placed in the call to getmsg(3C), as the parameter msg_num.

DIAGNOSTICS

If insertmsg doesn’t find the opening or closing double quote where it expects it in the strings file,
it prints "insertmsg exiting : lost in strings file” and dies. If this happens check the strings file to
make sure that the lines that have been kept there haven’t been altered.

SEE ALSO

BUGS

findstr(1), gencat(1), getmsg(3C).

Inserts a pointer to a static area which is overwritten on each call.

Hewlett—Packard -1- July 2, 1985

IPCRM(1) IPCRM(1)

NAME
ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS
ipcrm [options |

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION
Ipcrm will remove one or more specified messages, semaphore or shared memory identifiers. The
identifiers are specified by the following options:

-q msqid removes the message queue identifier msqid from the system and destroys the mes—
sage queue and data structure associated with it.

-m shmid removes the shared memory identifier shmid from the system. The shared memory
segment and data structure associated with it are destroyed after the last detach.

-8 semid removes the semaphore identifier semid from the system and destroys the set of
semaphores and data structure associated with it.

-Q msgkey removes the message queue identifier, created with key msgkey, from the system and
destroys the message queue and data structure associated with it.

-M shmkey removes the shared memory identifier, created with key shmkey, from the system.
The shared memory segment and data structure associated with it are destroyed
after the last detach.

-S semkey removes the semaphore identifier, created with key semkey, from the system and
destroys the set of semaphores and data structure associated with it.

The details of the removes are described in msgctl(2), shmetl(2), and semctl(2). The identifiers
and keys may be found by using ipes(1).
SEE ALSO
ipes(1).
msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmetl(2), shmget(2), shmop(2).

Hewlett-Packard -1- July 2, 1985

-

IPCS(1) IPCS(1)

NAME

ipcs - report inter-process communication facilities status

SYNOPSIS

ipcs [options]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Ipcs prints certain information about active inter-process communication facilities. Without
options, information is printed in short format for message queues, shared memory, and sema—
phores that are currently active in the system. Otherwise, the information that is displayed is
controlled by the following options:

585.spOu

-q Print information about active message queues.

-m Print information about active shared memory segments.
-s Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about only those indicated will be
printed. If none of these three are specified, information about all three will be printed.

-b Print biggest allowable size information. (Maximum number of bytes in messages on
queue for message queues, size of segments for shared memory, and number of semaphores
in each set for semaphores.) See below for meaning of columns in a listing.

-c Print creator’s login name and group name. See below.

-0 Print information on outstanding usage. (Number of messages on queue and total
number of bytes in messages on queue for message queues and number of processes
attached to shared memory segments.)

-p Print process number information. (Process ID of last process to send a message and pro-
cess ID of last process to receive a message on message queues and process ID of creating
process and process ID of last process to attach or detach on shared memory segments)
See below.

-t Print time information. (Time of the last control operation that changed the access per—
missions for all facilities. Time of last msgsnd and last msgrcv on message queues, last
shmat and last shmdt on shared memory, last semop(2) on semaphores.) See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -0, -p, and -t.)

-C corefile
Use the file corefile in place of /dev/kmem. This option is not supported on the Series
500.

-N namelist

The argument will be taken as the name of an alternate namelist (/hp—ux is the default).

The column headings and the meaning of the columns in an ipes listing are given below; the
letters in parentheses indicate the options that cause the corresponding heading to appear; all
means that the heading always appears. Note that these options only determine what information
is provided for each facility; they do not determine which facilities will be listed.

T (all) Type of the facility:
q message queue;
m shared memory segment;
s semaphore.
1D (all) The identifier for the facility entry.
KEY (all) The key used as an argument to msgget, semget, or shmget to create the facility

entry. (Note: The key of a shared memory segment is changed to

Hewlett-Packard -1- July 9, 1985

IPCS (1)

MODE

OWNER
GROUP
CREATOR
CGROUP
CBYTES

QNUM
QBYTES

LSPID
LRPID

STIME
RTIME
CTIME
NATTCH
SEGSZ
CPID
LPID

ATIME
DTIME

NSEMS
OTIME

Hewlett—-Packard

IPCS(1)

IPC_PRIVATE when the segment has been removed until all processes
attached to the segment detach it.)

(all) The facility access modes and flags: The mode consists of 11 characters that
are interpreted as follows:
The first two characters are:

R if a process is waiting on a msgrcv;

S if a process is waiting on a msgsnd;

D if the associated shared memory segment has been removed. It will
disappear when the last process attached to the segment detaches
it;

C if the associated shared memory segment is to be cleared when the
first attach is executed;

- if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits each. The first
set refers to the owner’s permissions; the next to permissions of others in the
user—group of the facility entry; and the last to all others. Within each set, the
first character indicates permission to read, the second character indicates per—
mission to write or alter the facility entry, and the last character is currently
unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;
- if the indicated permission is not granted.
all) The login name of the owner of the facility entry.
all) The group name of the group of the owner of the facility entry.
a,c) The login name of the creator of the facility entry.
a,c) The group name of the group of the creator of the facility entry.
2,0) The number of bytes in messages currently outstanding on the associated mes—
sage queue.
(a,0) The number of messages currently outstanding on the associated message
queue.
(a,b) The maximum number of bytes allowed in messages outstanding on the associ-
ated message queue.
(a,p) The process ID of the last process to send a message to the associated queue.
(a,p) The process ID of the last process to receive a message from the associated
queue.
(a,t) The time the last message was sent to the associated queue.
(a,t) The time the last message was received from the associated queue.
(a,t) The time when the associated entry was created or changed.
(a,0) The number of processes attached to the associated shared memory segment.
(a,b) The size of the associated shared memory segment.
(a,p) The process ID of the creator of the shared memory entry.
(a,p) The process ID of the last process to attach or detach the shared memory seg-
ment.
(a,t) The time the last attach was completed to the associated shared memory seg—
ment.
(a,t) The time the last detach was completed on the associated shared memory seg—
ment.
(a,b) The number of semaphores in the set associated with the semaphore entry.
(a,t) The time the last semaphore operation was completed on the set associated
with the semaphore entry.

(
(
(
(
(

-2- July 9, 1985

IPCS(1) IPCS (1)

FILES
/hp-ux system namelist
/dev/kmem memory
/etc/passwd user names
/etc/group group names
SEE ALSO
msgop(2), semop(2), shmop(2).
BUGS
Things can change while ipcs is running; the picture it gives is only a close approximation to real-
ity.

Hewlett—Packard -3- July 9, 1985

JOIN(1) JOIN(1)

NAME

join - relational database operator

SYNOPSIS

join | options] filel file2

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by the lines of filel and
file2. If filel is -, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the fields on which they
are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have identical join
fields. The output line normally consists of the common field, then the rest of the line from file1,
then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case, multiple separators
count as one field separator, and leading separators are ignored. The default output field separa—
tor is a blank.

Some of the below options use the argument n. This argument should be a 1 or a 2 referring to
either filel or file2, respectively. The following options are recognized:

-an In addition to the normal output, produce a line for each unpairable line in file n, where n
is 1 or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each file. Fields are
numbered starting with 1.

-0 list Each output line comprises the fields specified in list, each element of which has the form
n.m, where n is a file number and m is a field number. The common field is not printed
unless specifically requested.

-tc Use character ¢ as a separator (tab character). Every appearance of ¢ in a line is
significant. The character ¢ is used as the field separator for both input and output.

EXAMPLE

The following command line will join the password file and the group file, matching on the
numeric group 1D, and outputting the login name, the group name and the login directory. It is
assumed that the files have been sorted in ASCII collating sequence on the group ID fields.

join -j1 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group

SEE ALSO

BUGS

awk(1), comm(1), sort(1), unig(1).

With default field separation, the collating sequence is that of sort -b; with -t, the sequence is
that of a plain sort.

The conventions of join, sort, comm, uniqg and ewk(1) are incongruous.

Filenames that are numeric may cause conflict when the —o option is used right before listing
filenames.

Hewlett-Packard -1- July 2, 1985

KILL (1) KILL (1)

NAME

kill - terminate a process

SYNOPSIS

kill [-signo | PID ...

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V

DESCRIPTION

Kill sends signal 15 (terminate) to the specified processes. This will normally kill processes that
do not catch or ignore the signal. The process number of each asynchronous process started with
& is reported by the Shell (unless more than one process is started in a pipeline, in which case the
number of the last process in the pipeline is reported). Process numbers can also be found by
using ps(1).

The details of the kill are described in £ill(2). For example, if process number 0 is specified, all
processes in the process group are signaled.

The killed process must belong to the current user unless he is the super—user.

If a signal number preceded by - is given as first argument, that signal is sent instead of terminate
(see signal(2)). In particular “kill -9 ...” is a sure kill.

SEE ALSO

BUGS

ps(1), sh(1), kill(2), signal(2).

If a process becomes hung during some operation (such as I/O) so that it is never scheduled, that
process will not die until it is allowed to run. Thus, such a process may never go away after the
kill.

Hewlett-Packard -1- July 2, 1985

LAST(1) LAST(1)

NAME

last - indicate last logins of users and teletypes
SYNOPSIS

last, lastb [-N] [name ...] [tty ...]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: UCB
Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

Last will look back in the wtmp file which records all logins and logouts for information about a
user, a teletype or any group of users and teletypes. Arguments specify names of users or tele-
types of interest. Names of teletypes may be given fully or abbreviated. For example ‘last 0’ is
the same as ‘last tty0’. If multiple arguments are given, the information which applies to any of
the arguments is printed. For example ‘last root console’ would list all of “root’s” sessions as well
as all sessions on the console terminal. Last will print the sessions of the specified users and tele—
types, most recent first, indicating the times at which the session began, the duration of the ses—
sion, and the teletype which the session took place on. If the session is still continuing or was cut
short by a reboot, last so indicates.

The pseudo-user reboot logs in at reboots of the system, thus
last reboot
will give an indication of mean time between reboot.

Last with no arguments prints a record of all logins and logouts, in reverse order. The -IN option
limits the report to N lines.

If last is interrupted, it indicates how far the search has progressed in wimp. If interrupted with a
quit signal (generated by a control-\) last indicates how far the search has progressed so far, and
the search continues.

Lastb will look back in the btmp database to display bad login information.

FILES
Jusr/adm/wtmp login data base
/usr/adm/btmp bad login data base
SEE ALSO

login(1), wtmp(5)

Hewlett—Packard -1- July 2, 1985

LD(1)

NAME

LD(1)

1d - link editor

SYNOPSIS

1d | [option] ... [file] ...] ...

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: HP

DESCRIPTION

Ld takes one or more object files as input and combines them to produce a single (usually execut—
able) file. In doing so it resolves references to external symbols, assigns final addresses to pro-
cedures and variables, revises code and data to reflect new addresses (a process called relocation),
and updates symbolic debug information (when it is present in the file). By default, Id processes
one or more object files to produce an executable file that can be run by the HP-UX loader
ezec(2). Alternatively, the linker can generate a relocatable file — one suitable for further process—
ing by Id (see -r below). Ld will not generate an output file if any errors occur during its opera—
tion.

Ld recognizes two kinds of input files: object files created by the compilers or assembler (also
known as ".0” files) and archives of such object files (called libraries). A library contains an index
of all the externally-visible symbols from its component object files. (The archiver command ar
creates and maintains this index.) Ld uses this table to resolve references to external symbols.

Ld processes files in the same order as they appear on the command line. It includes code and
data from a library element if, and only if, that object module provides a definition for a currently
unresolved reference within the user’s program. It is common practice to list libraries following
the names of all simple object files on the command line.

OPTIONS

Ld options may occur anywhere on the command line following the command name itself. Some
options require a modifier following the option letter (e.g. ... -0 outputname). Ld recognizes
modifiers either as part of the word containing the option letter, or as a separate word following
the option letter. This is the same convention as used by getopi(3).

Ld recognizes the following options. In the descriptions below, a colon following an option letter
indicates that it takes an additional modifier. The colon itself is not literal, and must not appear
on the command line.

-N generate an (executable) output file that is not shareable.

-Q ensure that the output file is not marked as demand-loadable. (This is the complement
of the —q option.)

—V : specifies a version stamp (in decimal) to identify the output file. This is not the same as
the version information reported by the SCCS what(1) command.

—X : indicates the initial size for the linker’s global symbol table. Thus you can reduce link
time for very large programs (i.e. those with very many external symbols). Note: the
linker expands its data structures as necessary no matter what their starting size. pro-
vides the user with a means of controlling the size of the linker’s symbol table. It is useful
for dealing with very large applications that contain a great many externally visible sym-

bols.
—-d forces definition of “common” storage (i.e. assign addresses and sizes), even for —r output.
-e: names an alternate entry point for the output file. The loader will then call the alternate

entry point to initiate the program. (Thus this option only applies to executable files.)

—h: prior to writing the symbol table to the output file, mark this name as “local” so that it is
no longer externally visible. This ensures that this particular entry will not clash with a

Hewlett-Packard -1- July 2, 1985

LD(1)

-n

—0:

-q

-T

-u:

DEFAULTS

LD(1)

definition in another file during future processing by ld. (Of course, this only makes sense
with the -r option.)

abbreviation for a library name. Ld searches for a library called libz.a, where z is a
string of up to nine ASCII characters specified as the modifier to the —1 option. A null
string for z is the same as specifying ~lc.

In this case, the linker searches specific directories for libraries. By default, it first looks
in /lib, and then in /usr/lib. Since Id searches files (including libraries) in the same
order that they are named on the command line, the placement of —1 options is impor—
tant.

generate an (executable) output file with code to be shared by all users. Compare with
—-N.

specifies a name for the output file that the linker generates. (The default name is
a.out.)

generate an (executable) output file that is demand-loadable. Compare with —Q.

retains relocation information in the output file for subsequent re-linking. Ld will not
report undefined symbols.

“strip” the output file so that it does not contain symbol table, relocation, and debug
support information. This may impair or prevent the use of a symbolic debugger on the
resulting program. This option is incompatible with —r. (The strip(1) command also
removes this information.)

print a trace (to standard output) of each input file as Id processes it. The file names
appear once for each pass over the input (usually two).

indicates a name to enter as an undefined symbol in the linker’s symbol table. The
resulting unresolved reference is useful for linking a program entirely from object files in a
library.

Unless otherwise directed, /d names its output a.out. The -o option overrides this. Executable
output files are marked as shareable.

EXAMPLES

The following command line links part of a C program for later processing by ld. It also specifies
a version number of 2 for the output file. (Note the ".0” suffix for the output object file. This is
an HP-UX convention for indicating a linkable object file.)

1d -V2 —r filel.o file2.0 -o prog.o

The next example links a simple FORTRAN program for use with the ¢db(1) symbolic debugger.
The output file name will be a.out since there is no —o option in the command line.

1d —e start /lib/frt0.0 ftn.o —1177 -IF77 -lm -lc /usr/lib/end.o

Finally, this command will link a PASCAL program.

1d —e start /lib/prt0.o main.o ~Ipccat —Ipc —lm -le

HARDWARE DEPENDENCIES
Series 200:

The default entry point is taken to be text location 0x0 (which is also the default origin of
the program text). This corresponds to the first procedure in the first input file that the
linker reads. Use the -e option to select a different entry point.

Hewlett—Packard -2- July 2, 1985

LD(1)

LD(1)

The version number specified with the —V option must be in the range 0 - 32,767.
These options are specific to the Series 200 linker:
—R : specifies an alternate origin (in hexadecimal) for the text (i.e. code) segment.

—-x partially “strip” the output file: i.e. leave out local symbols. The intention is to
reduce the size of the output file without impairing the effectiveness of object file utili-
ties. Note: use of —x may impact the use of a debugger.

Series 500:

The linker searches for —_main (written as main in C) as the main entry point for a user
program. Use the -e option to select a different entry point.

The special names etext and edata are not supported.

The linker marks output files with the following memory management attributes by
default: virtual code, virtual data (both D-data and I-data), and paged I-data. Execut-
able output files are not shareable if they contain symbolic debug information.

The —t option displays file names twice, once for each pass over the input.

These options are specific to the Series 500 linker:

—A forces the linker to put D-data and I-data in separate segments.

-M:
enables merging of code segments. The integer argument specifies a target upper
bound on the size of output code segments. (The actual size may vary from this.)

~T forces the linker to put D-data and I-data into the same segment.

—v display verbose messages. This option may have little or no effect. It is useful for
obtaining more information about an error that occurs while linking.

Unless the user specifies a —A or a —T option, the linker puts all data in a single segment (GDS)
when the total data size is less than or equal to 16,384 bytes.

FILES
/lib/ert0.0 run-time start-up for C
/lib/frt0.0 run-time start-up for FORTRAN
/lib/prt0.0 run-time start-up for Pascal.
Jusr/lib/end.o for use with cdb/fdb/pdb(1)
/lib/libz.a libraries
/Jusr/lib/libz.a libraries
a.out output file
SEE ALSO
ar(1), cc(1), edb(1), fe(1), nm(1), pc(1), strip(1), exec(2), end(3), a.out(5), ar(5).
DIAGNOSTICS
Ld returns a zero when the link is successful. A non-zero return code indicates that an error
occurred.
WARNINGS

Ld recognizes several names as having special meanings. The names _end, _edata, and _etext

(end,

edata, and etext in C) are reserved. (See end(3) for details.) Users must not write alter—

native (externally—visible) definitions for these names.

Through its options, the link editor gives users great flexibility; however, those who invoke the
linker directly must assume some added responsibilities. Input options should insure the following
properties for programs:

When the link editor is called through cc(1), a start—up routine is linked with the user’s
program. This routine calls ezit(2) after execution of the main program. If the user calls id

Hewlett—Packard -3- July 2, 1985

LD (1) LD (1)

directly, then he or she must insure that the program always calls ezit(”) rather than fal-
ling through the end of the entry routine.

When linking for use with the symbolic debugger cdb, the user must ensure that the pro—
gram contains a routine called main and furthermore that main is the initial entry point for
executing the program. (Thus the —e option is compatible with debugging.) Also, the user
must link in the file /usr/lib/end.o as the last file named on the command line.

There is no guarantee that the linker will pick up files from libraries and include them in the final
program in the same relative order that they occur within the library.

Hewlett-Packard -4 - July 2, 1985

LEAVE(1) LEAVE(1)

NAME
leave - remind you when you have to leave

SYNOPSIS
leave [hhmm |

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION
Leave waits until the specified time, then reminds you that you have to leave. You are reminded
5 minutes and 1 minute before the actual time, at the time, and every minute thereafter. When
you log off, leave exits just before it would have printed the next message.

The time of day is in the form hhmm where hh is a time in hours (on a 12 or 24 hour clock). All
times are converted to a 12 hour clock, and assumed to be in the next 12 hours.

If no argument is given, leave prompts with “When do you have to leave?”. A reply of newline
causes leave to exit, otherwise the reply is assumed to be a time. This form is suitable for inclu—-
sion in a .login or .profile.

Leave ignores interrupts, quits, and terminates. To get rid of it you should either log off or use
“kill -9” giving its process id.

SEE ALSO
calendar(1)

Hewlett-Packard -1- July 2, 1985

LEX (1)

NAME

LEX (1)

lex - generate programs for lexical analysis of text

SYNOPSIS

HP-UX

lex [-rctvn | [file] ...

COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

Lez generates programs to be used in simple lexical analysis of text.

The input files contain strings and expressions to be searched for, and C text to be executed when
strings are found. Multiple files are treated as a single file. If no files are specified, the standard
input is used.

A file lex.yy.c is generated which, when loaded with the library, copies the input to the output
except when a string specified in the file is found; then the corresponding program text is exe-
cuted. The actual string matched is left in yytezt, an external character array. Matching is done
in order of the strings in the file. The strings may contain square brackets to indicate character
classes, as in [abx-z] to indicate a, b, x, y, and z; and the operators #, +, and ? mean respec—
tively any non-negative number of, any positive number of, and either zero or one occurrences of,
the previous character or character class. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation are also supported.
The notation r{d,e} in a rule indicates between d and e instances of regular expression r. It has
higher precedence than |, but lower than *, ¢, +, and concatenation. The character " at the
beginning of an expression permits a successful match only immediately after a new-line, and the
character $ at the end of an expression requires a trailing new-line. The character / in an
expression indicates trailing context; only the part of the expression up to the slash is returned in
yytext, but the remainder of the expression must follow in the input stream. An operator charac—
ter may be used as an ordinary symbol if it is within ” symbols or preceded by \. Thus
[a-zA-Z]4 matches a string of letters.

Three subroutines defined as macros are expected: input() to read a character; unput(c) to
replace a character read; and output(c) to place an output character. They are defined in terms
of the standard streams, but you can override them. The program generated is named yylex(),
and the library contains a main() which calls it. The action REJECT on the right side of the rule
causes this match to be rejected and the next suitable match executed; the function yymore()
accumulates additional characters into the same yytert; and the function yyless(p) pushes back
the portion of the string matched beginning at p, which should be between yytert and
yytert+yyleng. The macros input and output use files yyin and yyout to read from and write to,
defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes
%% it is copied into the external definition area of the lex.yy.c file. All rules should follow a
%%, as in YACC. Lines preceding %% which begin with a non-blank character define the string
on the left to be the remainder of the line; it can be called out later by surrounding it with {}.
Note that curly brackets do not imply parentheses; only string substitution is done.

The flags, which must appear before any files, are as follows:

-r indicates ratfor(1) actions;

-c indicates C actions - this is the default;

-t causes the lex.yy.c program to be written instead to the standard output;
-v provides a one-line summary of statistics for the machine generated;

Hewlett—Packard -1- July 9, 1985

S

LEX (1) LEX (1)

-n suppresses printing of the - summary.

Certain table sizes for the resulting finite state machine can be set in the definitions section:

%p n number of positions is n (default is 2000);
%n n number of states is n (default is 500);
%t n number of parse tree nodes is n (default is 1000);
%an number of transitions is n (default is 3000).
The use of one or more of the preceding table options automatically implies -v, unless -n is
specified.
External names generated by lez all begin with the prefix yy or YY.
EXAMPLE
D [0-9]
%%
if printf("IF statement\n");
la-z]+ printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);
“++” printf(“unary op\n");
"+ printf(“binary op\n”);
WEN { loop:
while (input() != r);
switch (input())
case //I: break;
case /%/: unput(/«/);
default: go to loop;
}
}
SEE ALSO

yacc(1), malloc(3X).
LEX - Lezical Analyzer Generator, in HP-UX Concepts and Tutorials.

BUGS
The -r option is not yet fully operational.

Hewlett-Packard -2- July 9, 1985

LIFCP (1) LIFCP (1)

NAME

lifep - copy to or from LIF files

SYNOPSIS

lifep [-Txxx| [-Lxxx] [-vxxx] [-b] [-ixxx] [-r] [-t] filel file2
lifep [-Txxx] [-Lxxx] [-vxxx] [-b] [-ixxx] [-r] [-t] filel [file2 ...] directory

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: HP

DESCRIPTION

Lifcp copies a LIF file to an HP-UX file, an HP-UX file to a LIF file, or a LIF file to another LIF
file. It also copies a list of (HP-UX/LIF) files to a (LIF/HP-UX) directory. The last name on
the argument list is the destination file or directory.

Options may appear singly or be combined in any order before the file names. The space between
option and argument is optional.

-T xxx
Used only when copying files to a LIF volume. This option will force the file type of the
LIF directory entry to be set to the argument given, which may be decimal, octal or hex
in standard “C” notation.

-L xxx
Used only when copying files to a LIF volume. This option will set the “last volume flag”
to xxx (0 or 1). The default “last volume flag” is one.

-V XXX
Used only when copying files to a LIF volume. This option will set the “volume number”
to xxx. The default “volume number” is one.

b This option will force a BINARY mode of copying regardless of the file type. When copy—
ing in BINARY mode from HP-UX to LIF the default file type is BINARY(-2). (For
details on available modes of copying refer to LIF(5)). This option is a no-op when copy—
ing from LIF to LIF.

—i xxx Used only when copying files to a LIF volume. This option sets the “implementation”
field of the LIF directory entry to the argument given, which may be decimal, octal or hex
in standard “C” notation. The "implementation” field can only be set for file types —2001
to —100000 (octal). The "implementation” field is set to zero for all interchange file types
and for file types —2 to 200 (octal).

-r This option will force a RAW mode of copying regardless of the file type. When copying
in RAW mode from HP-UX to LIF the default file type is BIN(-23951). —T option will
override the default file type. (various modes of copying are explained in LIF(5).) This
option is a no-op in case of LIF to LIF copying.

-t will cause the HP-UX file names to be translated to a name acceptable by a LIF utility.
That is, all the lower—case letters will be up-shifted and all other characters except
numeric will be changed to an underscore (—). If the HP-UX file name starts with a
non-letter, the file name will be preceded by the capital letter (X). Note that if there are
two files named colon (:) and semicolon (;), both of them will be translated to X__. File
names will be truncated to a maximum of 10 characters. When copying a LIF file to
(HP-UX/LIF) file —t is a no-op. Omitting —t will cause error to be generated if an
improper name is used.

The default copying modes when copying from LIF to HP-UX are summarized in the following
table:

file type default copying mode

Hewlett-Packard -1- July 2, 1985

LIFCP (1) LIFCP (1)

ASCIHI ASCII
BINARY BINARY
BIN RAW

other RAW

When copying from HP-UX to LIF, the default copying mode is ASCII and an ASCII file is
created.

When copying from LI to LIF, if no options are specified then all the LIF directory fields and
content of the file are duplicated from source to destination.

A LIF file name is recognized by the embedded colon (:) delimiter (see lif(5) for LIF file naming
conventions). A LIF directory is recognized by a trailing colon. If an HP-UX file name contain-
ing a colon is used, the colon must be escaped with two backslash characters (\\) (the shell
removes one of them).

The file name ‘-’ (dash) will be interpreted to mean standard input or standard output, depending
on its position in the argument list. This is particularly useful if the data requires non-standard
translation. When copying from standard input, if no other name can be found, the name
“STDIN” is used.

The LIF file naming conventions are known only by the LIF utilities. Since file name expansion is
done by the shell, this mechanism cannot be used for expansion of LIF file names.

Note that the media should not be mounted while using lifcp.

HARDWARE DEPENDENCIES
Series 500:
You must use a character special file to access the media.

EXAMPLES

lifcp abc lifvol:CDE
copy HP-UX file abc to LIF file CDE on LIF volume lifvol which is actually an HP-UX file
initialized to be a LIF volume.

lifcp —t * ../lifvol:
will copy all the HP-UX files in the current directory to the LIF volume lifvol which is
present in the parent directory. File names are translated to appropriate LIF file names.

lifcp —r —T -5555 —t *.o lifvol:
will copy all the HP-UX object files in the current directory to the LIF volume lifvol. Copy-
ing mode is RAW and LI file types are set to —5555.

lifcp —b *.0 lifvol:
All the object files in the current directory are copied to the LIF volume lifvol. Copying
mode is BINARY and LIF BINARY files are created.

lifcp —r —t * /lifvol:
All the files in the current directory are copied to the LIIF volume lifvol in root directory.
Copying mode is RAW and LIT file types are set to BIN.

lifcp abe\\: lifvol:CDE
copy file abe: to LIF file CDE in lifvol.

lifcp —t abc def lifvol:
copy files abc and def to lif files ABC and DEF within lifvol.

lifcp lifvol: ABC .
copy LIF file ABC within lifvol to file ABC within current directory.

lifcp - /dev/fd.0:A_FILE
copy standard input to LIF file A_FILE on LIF volume /dev/fd.0.

Hewlett-Packard -2- July 2, 1985

LIFCP (1) LIFCP (1)

lifep lifvol:ABC /dev/fd.0:CDE
copy LIF file ABC in lifvol to LIF file CDE on /dev/fd.0.
pr abce | lifep - lifvol:ABC
copy the output of pr to the LIF file ABC.
pr abce | lifep - lifvol:
copy the output of pr to the LIF volume lifvol. LIF file STDIN is crated since no files
names are specified.
lifcp lifvol: ABC -
copy LIF file ABC in lifvol to standard out.
lifep * ../lifvol:
copy all files within current directory to LIF files of the same name on LIF volume lifvol
(may cause errors if file names in the current directory do not obey LIF naming conven-
tions!).
SEE ALSO
1if(5), lifinit(1), lifls(1), lifrename(1), lifrm(1).
DIAGNOSTICS

Lifep returns exit code 0 if the file is copied successfully. Otherwise it prints a diagnostic and
returns non-zero.

Hewlett-Packard -3- July 2, 1985

o

LIFINIT (1) LIFINIT (1)

NAME

lifinit - write LIF volume header on file

SYNOPSIS

lifinit [-vnnn] [-dnnn] [-n string] file

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: HP

DESCRIPTION

Lifinit writes a LIF' volume header on a volume or file. Options may appear in any order. Their
meanings are:

-vann Sets the volume size to nnn bytes. If nnn is not a multiple of 256, it will be rounded
down to the next such multiple.

-dnnn Sets the directory size to nnn file entries. If nnn is not a multiple of 8, it will be
rounded up to next such multiple.

-n string sets the volume name to be string. If the -n option is not specified, the volume name
is set to the last component of the path name specified by file. A legal LIF volume
name is 6 characters long and is limited to upper case letters (A-Z), digits (0-9) and
the underscore character (). The first character (if any) must be a letter. The util-
ity will automatically perform translation to create legal LIF volume names. There—
fore, all lower-case letters are up-shifted and all other characters except numeric and
underscore will be replaced with capital letter (X). If the volume name does not start
with a letter, the volume name will be preceded by the capital letter (X). The
volume name will also be right padded with blanks or truncated as needed to be 6
characters long. If —m is used with no string, the default volume name is set to 6
blanks.

If file does not exist, a regular HP-UX disc file is created and initialized.

The default values for volume size are 256K bytes for regular files, and the actual capacity of the
device (as determined by wvolsize(3)) for device files.

The default directory size is a function of the volume size. A percentage of the volume size is allo—
cated to the volume directory as follows:

VOLUME SIZE DIRECTORY SIZE
< 2MB "1.3%
> 2MB 70.5%

Each directory entry occupies 32 bytes of storage. The actual directory space is subject to the
rounding rules stated above.

Note that you should not mount the special file before using lifinit.

HARDWARE DEPENDENCIES

Series 200:
If your media has never been initialized, it must be initialized using mediainit before lifinit
can be used. (Refer to the System Administrator Manual for details concerning
mediainit.)

Series 500:
You must use a character special file to access the media.

If your media has never been initialized, it must be initialized using sdfinit(8) before lifinit
can be used.

Hewlett—-Packard -1- July 11, 1985

LIFINIT (1) LIFINIT (1)

EXAMPLES

lifinit -v500000 -d10 x

lifinit /dev/rfd.0
SEE ALSO

1if(5), lifep(1), lifls(1), lifrename(1), lifrm(1), sdfinit(8).
DIAGNOSTICS

Lifinit returns exit code 0 if the volume is initialized successfully. Otherwise it prints a diagnostic
and returns non-zero.

WARNING
Do not terminate lifinit once it has started executing. Otherwise, your media could become cor-
rupted.

Hewlett-Packard -2- July 11, 1985

LIFLS(1)

NAME

LIFLS (1)

lifls - list contents of a LIF directory

SYNOPSIS

lifls [option] name
HP-UX COMPATIBILITY

Level:
Origin:
DESCRIPTION

HP-UX/NUCLEUS
HP

Lifls lists the contents of a LIF directory on STDOUT. The default output format calls for the
file names to be listed in multiple columns (as is done by Is(1), except unsorted) if STDOUT is a
character special file. If STDOUT is not a teletype, the output format is one file name per line.
Name is a path name to an HP-UX file containing a LIF volume and optional file name. If name
is a volume name, the entire volume is listed. If name is of the form volume:file, then only the file
is listed. Following options are available and only one option should be specified at any one time.

-1

-C
-L
-i

-V

List in long format, giving volume name, volume size, directory start, directory size, file
type, file size, file start, “implementation” field (in hex), date created, last volume and
volume number.

Force multiple column output format regardless of STDOUT type.
Will return the content of the “last volume flag” in decimal.
Will return the content of the “implementation” field in hex.

Will return the content of the “volume number” in decimal.

Note that you should not mount the special file before using lifls.

HARDWARE DEPENDENCIES
Series 500:

EXAMPLES

You must use a character special file to access the media.

lifls -1 ../TEST /header
lifls -C /dev/rfd.0

SEE ALSO

1if(5), lifep(1), lifinit(1), lifrename(1), lifrm(1).

DIAGNOSTICS

Lifls returns exit code 0 if the directory was listed successfully. Otherwise it prints a diagnostic
and returns non-zero.

Hewlett—Packard -1- July 2, 1985

LIFRENAME (1) LIFRENAME (1)

NAME
lifrename - rename LIF files
SYNOPSIS
lifrename oldfile newfile
HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: HP
DESCRIPTION
Oldfile is a full LIF file specifier (see [if(5) for details) for the file to be renamed (e.g.
liffile:A_FILE). Newfile is new name to be given to the file (only the file name portion). This

operation does not include copy or delete. Old file names must match the name of the file to be
renamed, even if that file name is not a legal LIF name.

Note that you should not mount the special file before using lifrename.

HARDWARE DEPENDENCIES

Series 500:

You must use a character special file to access the media.

EXAMPLES

lifrename liffile:A_FILE B_FILE

lifrename /dev/fd.0:ABC CDE
SEE ALSO

1if(5), lifep(1), lifinit(1), lifls(1), lifrm(1).
DIAGNOSTICS

Lifrename returns exit code 0 if the file name is changed successfully. Otherwise it prints a diag-
nostic and returns non—zero.

Hewlett—Packard -1- July 2, 1985

I

LIFRM (1) LIFRM (1)

NAME
lifrm - remove a LIF file

SYNOPSIS
lifrm filel ... filen

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP

DESCRIPTION
Lifrm removes one or more entries from a LIF volume. File name specifiers are as described in
lf(5).

Note that you should not mount the special file before using lifrm.
HARDWARE DEPENDENCIES

Series 500:

You must use a character special file to access the media.

EXAMPLES

lifrm liffile:MAN

lifrm /dev/rfd.0:F
SEE ALSO

1if(5), lifep(1), lifinit(1), lifls(1), lifrename(1).
DIAGNOSTICS

Lifrm returns exit code 0 if the file is removed successfully. Otherwise it prints a diagnostic and

returns non-zero.

Hewlett—Packard -1- July 2, 1985

LINE(1) LINE (1)

NAME
line - read one line from user input

SYNOPSIS
line
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
DESCRIPTION
Line copies one line (up to a new-line) from the standard input and writes it on the standard

output. It returns an exit code of 1 on EOF and always prints at least a new-line. It is often
used within shell files to read from the user’s terminal.

SEE ALSO
read (documented under sh(1)), read(2).

Hewlett—Packard -1- July 9, 1985

LINKINFO(1) Series 500 Only LINKINFO(1)

NAME

linkinfo - object file link information utility
SYNOPSIS

linkinfo [[option] ... [file] ...] ...

HP-UX COMPATIBILITY
Level: HP-UX/OPTIONAL

Origin: HP
Remarks: Linkinfo is implemented on the Series 500 only.
DESCRIPTION

Linkinfo examines the object files that are part of a program and prints statistics about sizes of
the various data areas and symbol table information. Linkinfo searches libraries and examines
object files in the same fashion as the link editor /d. Thus your command line should reflect the
same ordering of object files and libraries as it does for the corresponding link.

Linkinfo is intended for developers of large FORTRAN applications who want information about
data sizes in order to tune their application for the Series 500 architecture. It prints a file-by—file
summary of sizes for code segments and for the D-data and I-data areas (both initialized and
uninitialized). There are options for including information about COMMON blocks, linker—
generated pointers, and linker symbol entries (again, file-by-file). There is also provision for gen—
erating a crude cross-reference of COMMON block usage by file.

Linkinfo options may occur anywhere on the command line after the command name itself. Some
options take a modifier immediately following the option letter (e.g. ... —e entryname). The space
between the option and the modifier is optional.

This utility recognizes the following options. Note that a colon indicates that the option takes an
argument; the colon itself is not a literal, and must not appear when specifying arguments.

- requests the name and size of COMMON blocks in the input files.

—e: names an alternate entry point for the user program, other than __main. The loader calls
this alternate entry point at run—time.

-1: abbreviates a library name. Linkinfo searches a default set of directories to locate the
desired library. These directories are /lib and /usr/lib.

The utility searches these directories in the above order, looking for the library libzzz.a,
where 2zz is a string of one or more ASCII characters specified as the modifier for the -1
option. Since lLnkinfo searches a library immediately upon encountering the library’s
name on the command line, the placement of the —1 option is significant. A -1 with no
modifier is the same as —lc, which causes linkinfo to search the standard C library.

-p requests size information on linker-generated pointers.
-s forces inclusion of symbol table size information for each input file.
—u: specifies a name to enter in the symbol table as undefined. This entry appears as an

unresolved reference to the command name. You can use it to force loading object infor—
mation solely from a library.

-x produces a cross-referenced listing of COMMON block usage. This information is saved in
the file zref.out.

Hewlett-Packard -1- July 9, 1985

LINKINFO(1) Series 500 Only

SEE ALSO
1d(1), getopt(1).
DIAGNOSTICS
Linkinfo returns the following exit codes:
0 - no errors
1 - abort (killed by signal)
2 - error during link

Hewlett-Packard -2-

LINKINFO (1)

July 9, 1985

LINT(1) LINT (1)

NAME
lint - a C program checker/verifier

SYNOPSIS
lint [option] file ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION

Lint attempts to detect features of the C program files which are likely to be bugs, non—portable,
or wasteful. It also checks type usage more strictly than the compilers. Among the things that
are currently detected are unreachable statements, loops not entered at the top, automatic vari-
ables declared and not used, and logical expressions whose value is constant. Moreover, the usage
of functions is checked to find functions that return values in some places and not in others, func—
tions called with varying numbers or types of arguments, and functions whose values are not used
or whose values are used but none returned.

Arguments whose names end with .c are taken to be C source files. Arguments whose names end
with .In are taken to be the result of an earlier invocation of lint with either the -c or the -o
option used. The .In files are analogous to .o (object) files that are produced by the cc(1) com—
mand when given a .c file as input. Files with other suffixes are warned about and ignored.

Lint will take all the .c,.In, and llib-lz.In files (specified by -1z) and process them in their com-
mand line order. By default, lint appends the standard C lint library (llib-lc.ln) to the end of
the list of files. However, if the -p option is used, the portable C lint library (llib—port.In) is
appended instead. When the -c option is not used, the second pass of lint checks this list of files
for mutual compatibility. When the -c option is used, the .In and the llib—1z.In files are ignored.

Any number of lint options may be used, in any order, intermixed with file-name arguments. The
following options are used to suppress certain kinds of complaints:

-a Suppress complaints about assignments of long values to variables that are not long.

-b Suppress complaints about break statements that cannot be reached. (Programs pro-
duced by lex or yacc will often result in many such complaints).

-h Do not apply heuristic tests that attempt to intuitively find bugs, improve style, and
reduce waste.

-u Suppress complaints about functions and external variables used and not defined, or
defined and not used. (This option is suitable for running lint on a subset of files of a
larger program.)

-v Suppress complaints about unused arguments in functions.
-x Do not report variables referred to by external declarations but never used.
The following arguments alter lint’s behavior:

-1z Include additional lint library llib-lz.ln. For example, you can include a lint version of
the Math Library llib—lm.In by inserting -lm on the command line. This argument does
not suppress the default use of llib—lc.In. These lint libraries must be in the assumed
directory. This option can be used to reference local lint libraries and is useful in the
development of multi-file projects.

-n Do not check compatibility against either the standard or the portable lint library.

-p Attempt to check portability to other dialects of C. Along with stricter checking, this
option causes all non-external names to be truncated to eight characters and all external
names to be truncated to six characters and one case.

Hewlett-Packard -1- July 2, 1985

LINT(1) LINT (1)

-c Cause lint to produce a .In file for every .c file on the command line. These .In files are
the product of lint’s first pass only, and are not checked for inter-function compatibility.

-0 lib Cause lint to create a lint library with the name llib—1/Zb.In. The -c option nullifies any
use of the -o option. The lint library produced is the input that is given to lint’s second
pass. The -o option simply causes this file to be saved in the named lint library. To pro—
duce a llib—1/ib.In without extraneous messages, use of the -x option is suggested. The
-v option is useful if the source file(s) for the lint library are just external interfaces (for
example, the way the file llib—lc is written). These option settings are also available
through the use of “lint comments” (see below).

The -D, -U, and -I options of ¢pp(1) and the -g, -O, and -Y options of cc(1) are also recognized
as separate arguments. The -g and -O options are ignored, but, by recognizing these options,
lint’s behavior is closer to that of the cc(1) command. Other options are warned about and
ignored. The pre-processor symbol “lint” is defined to allow certain questionable code to be
altered or removed for lint. Therefore, the symbol “lint” should be thought of as a reserved word
for all code that is planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable code. (This comment is
typically placed just after calls to functions like ezit(2)).

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments in the following
function declaration. The data types of the first n arguments are checked; a
missing n is taken to be 0.

/*ARGSUSEDs/
turns on the -v option for the next function.

/*LINTLIBRARY * /
at the beginning of a file shuts off complaints about unused functions and func-
tion arguments in this file. This is equivalent to using the -v and -x options.

Lint produces its first output on a per-source-file basis. Complaints regarding included files are
collected and printed after all source files have been processed. Finally, if the -c¢ option is not
used, information gathered from all input files is collected and checked for consistency. At this
point, if it is not clear whether a complaint stems from a given source file or from one of its
included files, the source file name will be printed followed by a question mark.

The behavior of the -¢ and the -0 options allows for incremental use of lint on a set of C source
files. Generally, one invokes lint once for each source file with the -¢ option. Each of these invo-
cations produces a .In file which corresponds to the .c file, and prints all messages that are about
just that source file. After all the source files have been separately run through lint, it is invoked
once more (without the -c option), listing all the .In files with the needed -lz options. This will
print all the inter—file inconsistencies. This scheme works well with make(1); it allows make to be
used to lint only the source files that have been modified since the last time the set of source files
were linted.

Hewlett-Packard -2- July 2, 1985

LINT(1) LINT (1)

HARDWARE DEPENDENCIES
Series 200:
Lint utilizes a special version of the C compiler front end. The size of the internal com-
piler tables can be adjusted by using the —IN option. The syntax for this option is
described in the Series 200 HARDWARE DEPENDENCIES section of the manual page
for ce(1).
FILES
cc(1), epp(1), make(1).
BUGS

ezit(2), longgmp(3C), and other functions that do not return are not understood; this causes vari-
ous lies.

Hewlett-Packard -3- July 2, 1985

LOCK (1) LOCK(1)

NAME
lock - reserve a terminal

SYNOPSIS
lock
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: UCB
DESCRIPTION
Lock requests a password from the user, then prints a “locked” message on the terminal and

refuses to relinquish the terminal until the password is repeated. If the user forgets the password,
he has no other recourse but to login elsewhere and kill the lock process.

Hewlett—Packard -1- July 2, 1985

T

LOGIN (1) LOGIN (1)

NAME
login — sign on
SYNOPSIS
login [name [env-var ... ||

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

The login command is used at the beginning of each terminal session and allows you to identify
yourself to the system. It may be invoked as a command or by the system when a connection is
first established. Also, it is invoked by the system when a previous user has terminated the initial
shell by typing a cntrl-d to indicate an “end-of-file.” (See How to Get Started at the beginning of
this volume for instructions on how to dial up initially.)

If login is invoked as a command it must replace the initial command interpreter. This is accom-
plished by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if appropriate, your pass-
word. Echoing is turned off (where possible) during the typing of your password, so it will not
appear on the written record of the session. An invalid login name will cause a request for a pass-
word. This is done to make it more difficult for an unauthorized user to log in on the system by
trial and error. After three unsuccessful login attempts, a hangup signal is issued.

At some installations, an option may be invoked that will require you to enter a second “‘dialup”
password. This will occur only for dial-up connections, and will be prompted by the message
“dialup password:”. Both passwords are required for a successful login. See dialups(5) for details
on dialup security.

If you have defined no password, you will be diverted into passwd(1) to define a password, after
which you may attempt to login again. If password aging has been invoked by the super-user on
your behalf, your password may have expired. In this case, you will be diverted into passwd(1) to
change it, after which you may attempt to login again.

If you do not complete the login successfully within a certain period of time (e.g., one minute),
you will be silently disconnected.

After a successful login, the accounting files are updated, the command interpreter (usually sh(1))
is determined, and the user and group IDs, group access list, and working directory are initialized.
These specifications are found in the /etc/passwd file entry for the user. The name of the com-
mand interpreter as passed to it is — followed by the last component of the interpreter’s pathname
(i.e., —sh). If this field in the password file is empty, then the default command interpreter,
/bin/sh is used. The command interpreter performs its own initialization, and does login initiali-
zation if the name by which it is called starts with —.

If sh(1) is the command interpreter, it executes the profile files /etc/profile and
$HOME/ .profile if they exist. Depending on what these profile files contain, you are notified of
mail in your mail file or any messages you may have received since your last login.

If the command name field is “*””, then a chroot(2) is done to the directory named in the direc-
tory field of the entry. At that point login is re-executed at the new level which must have its
own root structure, including /etc/login and /etc/passwd.

The basic environment (see environ(7)) is initialized to:

Hewlett-Packard -1- November 19, 1985

LOGIN (1) LOGIN (1)

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=/usr/mail/ your-login-name
TZ=timezone-specification

For the super-user, PATH is augmented to include /etc.

The environment may be expanded or modified by supplying additional arguments to login, either
at execution time or when login requests your login name. The arguments may take either the
form zzz or zzz=yyy. Arguments without an equal sign are placed in the environment as
Ln=xxx

where n is a number starting at 0 and is incremented each time a new variable name is required.
Variables containing an = are placed into the environment without modification. If they already
appear in the environment, then they replace the older value. There are two exceptions. The
variables PATH and SHELL cannot be changed. This prevents people, logging into restricted
shell environments, from spawning secondary shells which are not restricted. Both login and getty
understand simple single-character quoting conventions. Typing a backslash in front of a charac-
ter quotes it and allows the inclusion of such things as spaces and tabs.

The presence of name suppresses the login: prompt, and uses name as the login name.

If /usr/adm/btmp is present, all unsuccessful login attempts are logged to this file. This
feature is disabled if the file is not present. A summary of bad login attempts may be viewed
using lastb (see last (1))

If /etc/securetty is present, login security is in effect and the super-user may only login success-
fully on the ttys listed in this file. Ttys are listed by device name, one per line. Valid tty names
are dependent on installation. Some examples could be “console”, “tty0l”, “ttyal”, etc. Note
that this feature does not inhibit a normal user from using su.

FILES
/ete/utmp users currently logged in
/ete/wtmp history of logins, logouts, and date changes
/usr/adm/btmp history of bad login attempts
/usr/mail/your-name mailbox for user your-name
/etc/motd message-of-the-day
/etc/passwd password file — defines users, passwords, and primary groups
/ete/profile system profile (initialization for all users)
$HOME/ .profile personal profile (individual user initialization)
/ete/dialups lines which require dialup security
/ete/d_passwd dialup security encrypted passwords
/ete/securetty list of valid ttys for root login

VARIABLES

HOME The users home directory.

PATH The path to be searched for commands.
SHELL Which command interpreter is being used.
MAIL Where to look for mail.

Tz The current timezone.

2T User specified named variables.

Lzzz User specified unnamed variables.

HARDWARE DEPENDENCIES

Multiple groups are not currently supported on Series 500 and Integral PC.

Hewlett-Packard -2- November 19, 1985

LOGIN (1) LOGIN (1)

SEE ALSO
last(1), mail(1), newgrp(l), passwd(l), sh(l), su(l), getty(lm), initgroups(3C), dialups(5),
group(5), passwd(5), profile(5), utmp(5), environ(7).
DIAGNOSTICS

Login incorrect
if the user name or the password cannot be matched.

No shell, cannot open password file, or no directory:
consult your system manager.

Your password has ezpired. Choose a new one.
if password aging is implemented.

No Root Directory:
attempted to log into a subdirectory that does not exist (i.e., passwd file entry had shell
name “*”, but the system cannot chroot to the given directory).

No /bin/login or /etc/login on root:
same as above except sub-root login command not found.

”Bad user id.” or "Bad group id.”
setuid or setgid failed.

Unable to change to directory <name>.
cannot chdir to your home directory.

No shell:
your shell (or /bin/sh if your shell name is null in /etc/passwd) could not be ezec’d.

Sorry, single-user
occurs if the version field from uname(2) starts with A (or if the uname system call fails)
and if your terminal name is not /dev/console and if your home shell is not named
Jusr/lib/uucp/uucico. You are not logged in.

No utmp entry. You must exec “login” from the lowest level "sh”.
if you attempted to execute login as a command without using the shell’s ezec internal com-
mand or from other than the initial shell.

You don’t have a password. Choose one.
This is the first time you have logged in, and you havn’t established a password. See
passwd(1) for the formation and entry of the password.

Hewlett-Packard -3- November 19, 1985

LOGNAME (1) LOGNAME (1)

NAME
logname - get login name

SYNOPSIS
logname

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION
Logname returns the contents of the environment variable SLOGNAME, which is set when a user
logs into the system.

FILES
/ete/profile

SEE ALSO
env(1), login(1), logname(3X), environ(7).

Hewlett-Packard -1- July 2, 1985

LORDER (1) LORDER (1)

NAME

lorder - find ordering relation for an object library
SYNOPSIS

lorder file ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

The input is one or more object or library archive files (see ar(1)). The standard output is a list
of pairs of object file names, meaning that the first file of the pair refers to external identifiers
defined in the second. The output may be processed by tsort(1) to find an ordering of a library
suitable for one-pass access by ld(1). Note that the link editor {d(1) is capable of multiple passes
over an archive in the portable archive format and does not require that lorder(1) be used when
building an archive. The usage of the lorder(1) command may, however, allow for a slightly more
efficient access of the archive during the link edit process.

The following example builds a new library from existing .o files.
ar cr library ’lorder .0 | tsort’
FILES
*symref, *symdef temporary files
SEE ALSO
ar(1), 1d(1), tsort(1).

BUGS
Object files whose names do not end with .0, even when contained in library archives, are over-
looked. Their global symbols and references are attributed to some other file.

Hewlett-Packard -1- November 19, 1985

LP(1) LP(1)

NAME
Ip, cancel - send/cancel requests to an LP line printer

SYNOPSIS
Ip [-c] [-ddest] [-m] [-nnumber] [-ooption| [-s] [-ttitle] [-w] files
cancel [ids] [printers]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

Native Language Support:
8-bit file names, 8-bit and 16-bit data, customs, messages

DESCRIPTION
Lp arranges for the named files and associated information (collectively called a request) to be
printed by a line printer. If no file names are mentioned, the standard input is assumed. The file
name - stands for the standard input and may be supplied on the command line in conjunction
with named files. The order in which files appear is the same order in which they will be printed.

Lp associates a unique 7d with each request and prints it on the standard output. This ¢d can be
used later to cancel (see cancel) or find the status (see Ipstat(1)) of the request.

The following options to Ip may appear in any order and may be intermixed with file names:

-c Make copies of the files to be printed immediately when Ip is invoked. Normally, files
will be linked into a spool directory. Ownership and mode of the linked .files remains
unchanged. If the -c option is given or linking is not possible then files are copied, in
which case the ownership and mode are set to allow read access to owner Ip and group
bin only. It should be noted that if the files are linked rather than copied, any
changes made to the named files after the request is made but before it is printed will
be reflected in the printed output.

-ddest Choose dest as the printer or class of printers that is to do the printing. If dest is a
printer, then the request will be printed only on that specific printer. If dest is a class
of printers, then the request will be printed on the first available printer that is a
member of the class. Under certain conditions (printer unavailability, file space limi-
tation, etc.), requests for specific destinations may not be accepted (see accept(1M)
and Ipstat(1)). By default, dest is taken from the environment variable LPDEST (if it
is set). Otherwise, a default destination (if one exists) for the computer system is
used. Destination names vary between systems (see lpstat(1)).

-m Send mail (see mail(1)) after the files have been printed. By default, no mail is sent
upon normal completion of the print request.

-nnumber Print number copies (default of 1) of the output.

-ooption Specify printer-dependent or class—dependent options. Several such options may be
collected by specifying the -o keyletter more than once. For more information about
what is valid as options for printers supported on your hardware, see the mklp(1M)
script.

-8 Suppress messages from Ip(1) such as “request id is ...".
-ttitle Print title on the banner page of the output.

-w Write a message on the user’s terminal after the files have been printed. If the user is
not logged in, then mail will be sent instead.

Cancel cancels line printer requests that were made by the Ip(1) command. The command line
arguments may be either request ¢ds (as returned by Ip(1)) or printer names (for a complete list,
use Ipstat(1)). Specifying a request id cancels the associated request even if it is currently

Hewlett—-Packard -1- July 2, 1985

LP(1) LP(1)

printing. Specifying a printer cancels the request which is currently printing on that printer. In
either case, the cancellation of a request that is currently printing frees the printer to print its
next available request.

EXAMPLES
1. Assuming there is an existing Hewlett-Packard 2934A line printer named Ip2, configured with
the hp2934a model interface program. This model has the -c option which will cause the
printer to print in a compressed mode. To obtain compressed print on Ilp2, use the com-—
mand:
Ip -dlp2 -oc files
FILES
/usr/spool/lp/x*
SEE ALSO
enable(1), Ipstat(1), mail(1). accept(1M), lpadmin(1M), lpsched(1M), mklp(1M).

Hewlett—Packard -2- July 2, 1985

LPSTAT(1) LPSTAT(1)

NAME

Ipstat - print LP status information

SYNOPSIS

Ipstat [options]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral Personal Computer.

Native Language Support:
8-bit file names and data, customs, messages.

DESCRIPTION

FILES

Lpstat prints information about the current status of the LP line printer system.

If no options are given, then Ilpstat prints the status of all requests made to Ip(1) by the user.
Any arguments that are not options are assumed to be request ¢ds (as returned by Ip). Lpstat
prints the status of such requests. Options may appear in any order and may be repeated and
intermixed with other arguments. Some of the keyletters below may be followed by an optional
list that can be in one of two forms: a list of items separated from one another by a comma, or a
list of items enclosed in double quotes and separated from one another by a comma and/or one or
more spaces. For example:

-u”userl, user2, user3”

The omission of a list following such keyletters causes all information relevant to the keyletter to
be printed, for example:

Ipstat -o
prints the status of all output requests.

-a[list] Print acceptance status (with respect to Ip) of destinations for requests. List is a list of
intermixed printer names and class names.

-c[list] Print class names and their members. List is a list of class names.
-d Print the system default destination for ip.

-o[list] Print the status of output requests. List is a list of intermixed printer names, class
names, and request ¢ds.

-p[list] Print the status of printers. List is a list of printer names.
-r Print the status of the LP request scheduler

-s Print a status summary, including the status of the line printer scheduler, the system
default destination, a list of class names and their members, and a list of printers and
their associated devices.

-t Print all status information.
-u[list] Print status of output requests for users. List is a list of login names.

-v[list] Print the names of printers and the pathnames of the devices associated with them.
List is a list of printer names.

Jusr/spool/lp/x

SEE ALSO

enable(1), Ip(1).

Hewlett-Packard -1- July 2, 1985

LS(1)

Is, 1, 11, Isf, Isr, 1sx — list contents of directories

SYNOPSIS

Is [-RadCxmlLnogrtucpFbqisf1A | [names]
1 [Is options] [names |

11 [Is options] [names |

Isf [Is options] [names]

Isr [Is options] [names]

Isx [Is options] [names |

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V and UCB

Native Language Support:
8-bit filenames.

DESCRIPTION

For each directory argument, Is lists the contents of the directory; for each file argument, Is
repeats its name and any other information requested. The output is sorted alphabetically by
default. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories,
network special files, SRM special files, and the contents of these directories and special files.

If you are the super-user, all files except . and .. are listed by default.

There are three major listing formats. The format chosen depends on whether the output is going
to a login device, and may also be controlled by option flags. The default format for a teletype is
to list the contents of directories in multi-column format, with the entries sorted down the
columns. (When individual file names (as opposed to directory names) appear in the argument
list, those file names are always sorted across the page rather than down the page in columns.
This is because the individual file names may be arbitrarily long.) If the standard output is not a
teletype, the default format is to list one entry per line, the —C and —x options enable multi-
column formats, and the —m option enables stream output format in which files are listed across
the page, separated by commas. In order to determine output formats for the —C, —x, and -m
options, ls uses an environment variable, COLUMNS, to determine the number of character posi-
tions available on one output line. If this variable is not set, the terminfo database is used to
determine the number of columns, based on the environment variable TERM. If this information
cannot be obtained, 80 columns are assumed.

There is an unbelievable number of options:

-R Recursively list subdirectories encountered. Network special filess and SRM files are
treated as directories only up to a fixed recursion limit. This is to prevent infinite loops
from developing between two network nodes which are mutually linked. This recursion
limit is currently set to 1.

-a List all entries; usually entries whose names begin with a period (.) are not listed.

-A The same as —a, except that the current directory “.” and parent directory “..” are not
listed. For the super-user, this flag defaults to ON, and is turned off by —A.

—-d If an argument is a directory, network special file, or SRM file, list only its name (not its
contents); often used with —1 to get the status of a directory.

-L If the argument is a symbolic link, list the file or directory link references rather than the

link itself. Not all HP-UX systems support symbolic links. See symlink(2).

-C Multi-column output with entries sorted down the columns.

Hewlett-Packard -1- November 19, 1985

LS(1)

-

—m

-n

-0

—g

~1

-T

—u

P
-F

LS(1)

Multi-column output with entries sorted across rather than down the page.
Stream output format.

List in long format, giving mode, number of links, owner, group, size in bytes, and time of
last modification for each file (see below). If the file is a special file, the size field will
instead contain the major and minor device numbers rather than a size. If the file is a
symbolic link the pathname of the linked-to file is printed preceded by *->’.

The same as —1, except that the owner’s UID and group’s GID numbers are printed,
rather than the associated character strings.

The same as -1, except that the group is not printed. (If both -1 and -o are specified, the
group is not printed.)

The same as —1, except that the owner is not printed. (If both -1 and -o are specified, the
owner is not printed.)

The file names will be listed in single column format regardless of the output device. This
will force single column format to the user’s terminal.

Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.
Sort by time modified (latest first) instead of by name.

Use time of last access instead of last modification for sorting (with the —t option) or
printing (with the -1 option).

Use time of last modification of the i-node (file created, mode changed, etc.) for sorting
(—t) or printing (-1).

Put a slash (/) after each filename if that file is a directory.

Put a slash (/) after each filename if that file is a directory, network special file, or SRM
file, and put an asterisk (*) after each filename if that file is executable.

Force printing of non-graphic characters to be in the octal \ddd notation.
Force printing of non-graphic characters in file names as the character (?).
For each file, print the i-number in the first column of the report.

Give size in blocks, including indirect blocks, for each entry.

Force each argument to be interpreted as a directory and list the name found in each slot.
This option turns off -1, —t, —s, and —r, and turns on —a; the order is the order in which
entries appear in the directory.

Ls normally is known by several names which provide shorthands for the various formats:

1 is equivalent to s —m.
11 is equivalent to Is —1.

Isf is equivalent to Is —F.
Isr is equivalent to Is —R.
Isx is equivalent to ls —x.

The shorthand notations are implemented as links to Is. Option arguments to the shorthand ver-
sions behave exactly as if the long form above had been used with the additional arguments.

The mode printed under the —1 option consists of 10 characters that are interpreted as follows:

The first character is:

d if the entry is a directory;
b if the entry is a block special file;
¢ if the entry is a character special file;

Hewlett-Packard -2- November 19, 1985

LS(1)

LS(1)

n if the entry is a network special file (LAN);

p if the entry is a fifo (a.k.a. “named pipe”) special file; 1if the entry is a sym-
bolic link;

— if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers
to the owner’s permissions; the next to permissions of others in the user-group of the file;
and the last to all others. Within cach set, the three characters indicate permission to
read, to write, and to execute the file as a program, respectively. For a directory, ‘‘exe-
cute’ permission is interpreted to mean permission to search the directory for a specified
file.

The permissions are indicated as follows:

if the file is readable;

if the file is writable;

if the file is executable;

— if the indicated permission is not granted.

X g~

The group-execute permission character is given as s if the file has set-group-ID mode;
likewise, the user-execute permission character is given as s if the file has set-user-ID
mode. The last character of the mode (normally x or —) is t if the 1000 (octal) bit of the
mode is on; see chmod(1) for the meaning of this mode. The indications of set-ID and
1000 bits of the mode are capitalized (S and T respectively) if the corresponding execute
permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect
blocks, is printed.

HARDWARE DEPENDENCIES

K Series 200:

Network and SRM files are not implemented.

Series 500:
The —a and —A options perform the same function.
FILES
/ete/passwd to get user IDs for Is —1 and Is —o.
/Jete/group to get group IDs for Is —1 and Is —g.
/Jusr/lib/terminfo/?/* to get terminal information.
SEE ALSO

chmod(1), find(1), symlink(2).

BUGS

Newline and tab are considered printing characters in file names.

The option setting based on whether the output is a teletype is undesirable as 1s —s is much
different than ls —s | lpr. On the other hand, not using this setting would make old shell scripts
which used Is almost inevitably fail.

Unprintable characters in file names may confuse the columnar output options.

Hewlett-Packard -3- November 19, 1985

LSDEV (1) Series 200/300 Implementation LSDEV (1)

NAME
Isdev — list device drivers in the system

SYNOPSIS
/etc/lsdev | major...]
HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD
Origin: HP
Remarks: This manual page describes Lsdev as implemented on the Series 200.
Not supported on the Integral Personal Computer.

DESCRIPTION

With no arguments, Isdev lists the major device numbers, for block and character files, and driver
names of all device drivers configured into the system and available for invocation via special files.
A “-1” in either the block or character column means that a major number does not exist for that
type.

If there are any arguments, they must represent major device numbers. The corresponding driver
name, if any, will be printed for each argument. Some numbers will return two driver names, one
for the block and one for the character.

Lsdev is simply a quick-reference aid. In some implementations, it may only read an internal list
of device drivers, not the actual list in the operating system.

SEE ALSO
Section 4.

DIAGNOSTICS
Lists the drivername as "no such driver” when appropriate.

Hewlett-Packard -1- November 19, 1985

LSDEV (1) Series 500 Implementation LSDEV (1)

NAME
Isdev — list device drivers in the system

SYNOPSIS
/etc/1sdev [major... |

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP
Remarks: This manual page describes lsdev as implemented on the Series 500.
not supported on the Integral Personal Computer.

DESCRIPTION
With no arguments, lsdev lists, one pair per line, the major device numbers and driver names of
all device drivers configured into the system and available for invocation via special files.

If there are any arguments, they must represent major device numbers. For each, Isdev lists the
corresponding driver name (if any).

Lsdev is simply a quick-reference aid. In some implementations, it may only read an internal list
of device drivers, not the actual list in the operating system.

SEE ALSO
Section 4.

DIAGNOSTICS
Lists the drivername as “no such driver” when appropriate.

Hewlett-Packard -1- November 19, 1985

PERMUTED INDEX

... test(1)
a641(3C)

abort(3C)

abs(3C)

absolute value, loating POINEcovvieiiriieiiiiier ettt sa e et stse e se e aenaes floor(3M)
absolute value, integer .. abs(3C)
access access(2)
access long integer data in machine-independent mannercc.coccevverirereserineecinncseeeenns sputl(3X)
access modes, change memory segmentcccceeeeeneenen. memchmd(2)
access terminfo database ... e tput(1)
access utmp file entry getut(3C)
accessing discs, description of blocked/unblocked disc Interfaceooeecirevniviniriceercnresrieninnine disc(4)
accounting commands, miscellaneous acct(1M)
accounting commands, overview acct(1M)
2CCOUNting COMMANS, PIOCESS ...ouvirvuriierererisirtreeieteseestesesesesestseseesesesesesesesesesemeesesenessensssesesensns acctcom(1)
accounting: CONNECE-tIME .ouivviviiiiiiiiiiiiiiiiict ittt ebe e ene e ene acctcon(1M)
accounting, convert binary wtmp records to ASCII fwtmp(1M)
accounting, correct time/date stamps on WHmp recordsooeveeeriirineeiiinneeeeeeeeneenns fwtmp(1M)
accounting: daily ...ooeeiviveiiii s runacct(1M)
accounting file fOrMAbcocciiiireviiiircie ettt acet(5)
accounting files: merge or add total acctmerg(1M)
accounting: generate disc usage data by user ID ... diskusg(1M)
accounting: process accountingcceceeevueennns . acctpre(1M)

accounting, record login names and times utmp(5)
accounting records command summary ... acctems(1M)
accounting: shell proceduresccccevueviiininiiiiiiiniceeee e ... acctsh(1M)
acctems .. acctems(1M)
acctcom . .. acctcom(1)
ACCECOIL Levviinriitiitieeti ittt bbb bbb bbb s acctcon(1M)
ACCEAISK wovieriiiiiei s acct(1M)
acctdusg ... acct(1M)
ACCEINEIE «ovviviiitititiini ettt et bbbttt s et bt s et et b et s bbb bbb b st b esese s acctmerg(1M)
Tl 0 OO OO acct(1M)
acctpre acctpre(1M)
ACCtSh vt .. acctsh(1M)
ACCEWEIND oo, .. acct(1M)
BCOS 1uvereutiseetesiitet ettt e b st e bbb b e h e e ae e bt et ea ek a kR et e Ree £tk enea bt e st et Res b eaen st R et s e et aen et enee trig(3M)
activity, terminate all current system activity . shutdown(1M)
AAD e et en adb(1)
add a swap device for interleaved paging/signallingc.cccccvrveeririrrirsiririereeee e swapon(2)
add backing Store deVICeSoovuvieiiiriieiiiiiiiii e et e vson(2)
add or change environment value putenv(3C)
add or merge total accounting fllesovveviviiiniiii e acctmerg(1M)
address space, allocate and free ... memalle(2)
address space, lock/unlock for process . memlck(2)
addresses, Get fOr PIOGTAII ...c.coeeiirveriieriiieererieesieeitiiteete e sbestessesseseessesaesseessessessesssssessnsssessnnnseens end(3C)

adjust adjust(1)

admin admin(1)
AAVAIICE 1euviiiiiiiiieeiiiititeert et st e see st st e este et esaae st e s bbeateessasseseeasestastestossanbenseesteeenaeeneantetsearaasssenrean regexp(7)
advise OS about segment reference patterns memadvise(2)
ALATIIL ottt s e h e b et st b enean alarm(2)
alarm clock, set alarm(2)
allocate a block of memory malloc(3C)
allocate and free address space memalle(2)
allocate backing store space to backing store deviceocevrviriverceicniniiennininreee e vsadv(2)
allocate data segment SPACe fOr PIOCESScceeceiiiiiiiienieiiieict ettt ettt st sn e reenea brk(2)

Permuted Index

a.out file format, description Ofcccooiiiiieiiiiiiiiniii e a.out(5)
append to an existing operating system oscp(1M)
appointments, reminder service for calendar(1)
5 OSSOSO RRTOONt ar(1)
arc cosine function trig(3M)
arc sine function trig(3M)
arc tangent fUNCEIONccovieieiiirieirt ettt et trig(3M)
archive, conversion t0 NEW fOrmatccccoeiviiiiiiiieciiiiincii e arcv(1)
archive file format, description ofcooeviiiiniiciiicnnen. ... ar(5)
archive file format, description of cpio archive file formatccceevievveniiiiiiiiiniincci e cpio(5)
archive files 0N tAPEc.cucviviveeiieiiiiii e tar(1)

archive library, find ordering relation for
archive, table of contents format description .

. lorder(1)
. ranlib(5)

archives and libraries, create and maintainccocooeeviiiniiiini ar(1)
archives, cOPY 0ut t0 MEdIAoceveerieriiereriericie ettt ese et s cpio(1)
archives, extract archive files from mediaccoceceeiiiiiiininniii . cpio(1)
AICY ottt e .. arev(1)
argument list handling facility, variablec.ccooeviiiieriiinineneceeeee e varargs(7)
argv, get next option letter from getopt(3C)
array, allocate memory space for malloc(3C)
array, print formatted data into printf(3S)
array, read and format data from scanf(3S)
BS Lttt et e b et t e h ettt a SRR E RS h et b e s RS e R S e e et R et a e a e a b reeais as(1)
BSA reerireriereni e s . asa(l)
ASA camage control characters, INterpret ..o asa(1)
ASCIE vevirerrereiire e .. ascii(7)
ASCII, convert base 64 ASCII to long integer ... aB41(3C)
ASCII, convert binary wtmp records to fwtmp(1M)
ASCII, convert floating point VAIIE 10 ..c..ceeveereeeeiririecrierceceiereere ettt en e seneaeas ecvt(3C)
ASCII, convert non-ASCIL t0 ASCIIcooiiiiiiiiniiriiicici s conv(3C)
ASCII, convert to numbers ... atof(3C)
ASCEIINE ..euiiiiiiiiticiiie bbbt ae ettt et s ctime(3C)
BSII1 ettt h et h et ettt b ekt b et b b et sttt sae b et e et et e aent e eaes trig(3M)
aSSEMbIEr fOr MOBBODDcoveueeuerierteeienieitetei ettt ettt ettt ettt et et eb e saeeb et ese e s se bt ebeeseese s estemaenin as(1)

assembler/linker executable output file, description of . . a.out(5)

assembly 1anguage, tTanslatecoccoeevreriieiieeciieec ettt et e a et enaa e atrans(1)
ASSETE veveviieiricece e assert(3X)
assign buffering to an open file setbuf(3S)
assiStance, Get fOr SCOUS ..ttt ee st ee et e e aeeste e s e e seeesbeeesaessae e sssesssensseessneenssennn help(1)
assure sufficient signal StACK SPACE ...evvevvirverriiierieeniirteeesertetent et eete e eraessesaeaseesneas . sigspace(2)

asynchronous terminal emulationccoevvereinincniiiiii e aterm(1)
e at(1)

trig(3M)
trig(3M)
aterm(1)
atof(3C)
atof(3C)
atof(3C)
atof(3C)
... atrans(1)
attributes, change program’s MEEINAlc.c.ccceeveriiiiieriiiieseieeeeeeeer e e st eeresaassse s e e esaesbeenee chatr(1)
automatically release blocked signals and wait for interrupt .. . sigpause(2)

AWK oottt et s ra et et saennas ... awk(1)
backing store devices, add/remove device from those availablec.coccccoveviiiiiiiiinniniiniicine vson(2)
backing store devices, allocate backing store Space t0c...cccoeceevviirininiiciiiiiccc e vsadv(2)

9.

Permuted Index

backing store usage, advise SYStEM aDOULc.vevveeriiiiiieeriiiteeitee et vsadv(2)
backspaces and reverse line-feeds, interpret for nroff(1)occcvvveiiiiniieinnicnicnieiccceerceeee col(1)
backup backup(1M)
backup Command Set 80 cartridge tAPEccvevveviirierciiiiiiieiiecieen e teio(1)
backup or archive file SYSEEIMceveeiiiereeiiiieieete ettt et et ae e sbeesteseesaeaenes backup(1M)
bannerccoeeeeiinniiiiiiie banner(1)
banners, make using large letterscoceoririniiiiiiiiiniicc e banner(1)
base-64 ASCII, convert t0 long INEEEETccccuriiiiiiriiriiirineiiictee ettt sae s a641(3C)
basenameccoceeveveeiiinniniiinnenennes basename(1)
baud rate, settings for terminalccoiiiiiiiiii tty(4)
beheckre bre(1M)

BAIff oo
Bell file system consistency check and interactive repair .

... bdiff(1)
... biffsck(1)

Bell file system, cOnStructccocecevvereeeerinenncnieneeens bifmkfs(1)
Bell file system debugger biffsdb(1)
Bell Interchange Format file UtilEIES ...oeoveveriiiiiieiiccieiec e bif(5)
Berkeley compatibility for magnetic tape, deseription Ofcccveeiriirsieririnreneeeree e mt(4)
Dessel FUNCEIONS ...vivuieiiiiieiciitit ettt ettt s b et bessel(3M)
bfs(1)

BIF directory, LISt ...ecueeiiieeeiiiiiiiiciiiet ettt bifls(1)
BIF directory, MAaKeccoeveiiiieiiiiiiiiiice et bifmkdir(1)
BIF file, change mode of . . bifchmod(1)
BIF fIle CODY +vevveerverrieieeeiiiieetetiseetetasteseessassaessesseassasssessassesseessasseessessassessessesssseseessassessensanssessense bifep(1)
BIF files or directories, FEIMOVEcoeuiiiiriiiiiiiiriiii sttt sr s sbe s se s bifrm(1)
bifchmod ..o, bifchmod(1)
bifchown bifchown(1)
bifep bifep(1)
bifdf bifdf(1)
biffind biffind(1)
biffls biffis(1)
biffsck biffsck(1)
biffsdb Dbiffsdb(1)
DIINKAIT coveviieieiiicici ittt ettt bifmkdir(1)
DAEILES vveveeveeeeorseeeeeeseseeesesseeeeeseessseseseesesssseesesssseseeeeesseseesesseesseeseseeseemeessesessesessessessesseessmeeseseerees bifmkfs(1)
... bifrm(1)

Dig file SCAIMET ..oiviiuiiiiiiiiiiiiic e e bfs(1)
binary search on a sorted table ... bsearch(3C)
bit bucket, special file equivalent to null(4)
block of MemMOry, AllOCALEcc.cciriiriiiieiiiiieii ettt malloc(3C)
block of memory, change size Ofc.ccooviiviiiiiiiii e malloc(3C)
block of memory, deallocate malloc(3C)
block signalscccveiiiiiiiiiiinnnn .. sigblock(2)
block size, find for mounted file systemcccooiiiiiiiii ustat(2)
block special file, createc.coceeeeuenne mknod(2), mknod(1M)
blocked disc interface, deseription ofcccoiciiiiiiiiiiiiiiiii disc(4)
blocked signals, release and wait for interrupt sigpause(2)
blocks, find number of free blocks for mounted file system ustat(2)
blocks, report number of free diSc DIOCKSccciiiirueriiriirieirirerie e df(1M)
boot area, allocate DYtes fOrcoiireiiiriniiicr et sdfinit(1M)
boot area, copy OS from one or more SDF boot areas to anotherccceccceeevincncreincnenneenns oscp(1M)
boot area, set or get current settings for system parameters in uconfig(1M)
DIC et bre(1M)
DIEAK ottt sh(1)
break value, get maximum for process ulimit(2)
break value, SEb OF et ...cc.ciiiiiiiiiiiiiici s brk(2)

Permuted Index

break-point debugging, enable for child PIrOCESScccervuirrrerreeriirreierirereteniree et eene e ptrace(2)
DIK ottt bbb a st ne s aen st rn brk(2)
DSEATCHL 1ottt et st a e et ettt enen bsearch(3C)
buffered file I/O package, AeSCrIPtIOn Ofcccevceuiiiiinreriiiirieieirteet et stdio(3S)
buffering, assign to open fileccoeveirrenenene ... setbuf(3S)
buffers, flush those associated with an open file fclose(3S)
byte offset of next I/O operation on file, SEtceveueveeueriiininieiiiieieieireis e fseek(3S)
byte SWappingcccceviirieeniniineniiiiienens swab(3C)
C COMPILET veuvienienierieriertietetteteet e stesrae st e bestee st e st eas e seebaesaese e s bt eaee st esbesse et senaeessaessanseeseensensesbeensesseensens ce(1)
C compiler, preprocessor for .. ¢cpp(1)
C flow graph, generate cflow(1)

C DIEDTOCESSOT ..eeevvvirvensirastesessesaeseesseseesessesassessssessessssessesassessesassensassessesessensessessensansensassensesenseneesenee cpp(1)
C program Checker/VEIIIETccccirueerieiirireciiirieeeiie ettt sa e aees lint(1)

C program, error message generator for .. perror(3C)
C PrOZTamm FOTMALEET ..ovvovevereeeeriieteietesteieierieteeet it ettt ettt e eese et es e eesessesasesesaesanessesannesessssenesessnen ¢b(1)
cache buffers, specify size and number ofccccovivniiiiiiiiii, uconfig(1M)
calendar calendar(1)
call another UNIX/HP-UX SYSEEIIccccetruimerueiiriireninienieiettsieeeie st e e seesssresassaesre e sasessensanes cu(1)
CAIIOC 1evviiiiiiit et ea st malloc(3C)
€aptoinfocoeveviviniiiiiii captoinfo(1M)
carriage control characters, interpret ASAcccocooviiviiiiiiiniiniiin asa(1)
cartridge tape, Command Set 80 UtIlILY ..ecoveeeriiriereiiinieircei e teio(1)
cartridge tape initializationcccoceeeenens mediainit(1)
cartridge tape, perform nput/output from/t0 ...c.coeeereirereiririercetceriecieiee ettt teio(1)
cartridge tape, unpack/extract files from Command Set 80 . . upm(1)
CAL evntitethe et e s h e bbb a e a et cat(1)
cat, compress, uncompress files compact(1)
CABIMIAIL. «eeuntieititeeiee et et et e et e saeeete s sa e st ess e e ae et e e b eeb e e ses s e s e b e ebeereensesaeeaesensesaesa s e s s enaesaeeaeeaantean catman(1M)

CATEAA ettt a st catread(3C)
.......... cb(1)
... ce(1)
) compact(1)
. cd(1), sh(1)
... cde(1)
floor(3M)
certify file system con31stency fsck(1M)
certify SDF: volume . sdfinit(1M)
. .. cflow(1)
change bars, create file containing diffmk(1)}
change data.segment SPace AllOCAION. ...ccouvirivereiiiiieeieieere ettt enes brk(2)
change:delta: commentary: of SCCS deltac.oovieviiiiiciniiiiicce s ... cde(1)
changefilemiodeicecieiin e chmod(l), chmod(2)
change:file OWNET OF GrOUD. ..uu.vieiiiiciiitcicict it st s bifchown(1)
change:file-owner or. group- .. . chown(1), chown(2)
change: group ID 0f USEE .c.oc.vivieiiiii ittt s e newgrp(1), sh(1)
ChAnEE 10ZIN PASSWOIT c.vcvevieveriiiieeeisiveererii e iae et ssecessessessnese e sresessesessssesesesesnnnsesesensesesessesennasene passwd(1)

change default login: shell: Liiiafaedieihensnessasasessbestevsmesessessnnacsarseresai It e e IR st e bt snansant chsh(1)
cHange MeImory SegMent 4CCESS MOAES iriieeriererreeeeriereesrerieeieeserieseaseessemseesssessesstssnesseesssesee - memchmd(2)
change.meode of a BIF file ... bifchmod(1)
change or' add Valile t0 EnVITONINENE ... ciseteiiireasesiassesseressessssessteessbecaneseaeesessssecssssssacsnesns putenv(3C)
change or read'real-time priority S S RSOOSR SRR rtprio(2)
change or set real-time priority rtprio(1)
change program’s internal attributes chatr(1)
change roet directory for a commandceiiiiiiiin chroot(1M)
change root directory for duration of commandc.ccocovmiviiiinniii chroot(1), chroot(2)

' cleari:nods; by Zeroing:it. out’

Permuted Index

change SCCS file PArAMELETScccueviiiiiiiiiiiiiiic e admin(1)
change size of previously-allocated block of memory malloc(3C)

change system statec.cooeeevirinencninciieneineee, ... init(1M)
change t0 ANOLREr USETcoicciririiiiiieiiect ettt st su(1)
change to different operating system Or VEISIONcccocoviiiiiiiiiiniiniiciieicne s chsys(1M)
change working directory cd(1), sh(1), chdir(2)
character ClassifiCAtIONiiviiieiiieeietcie ettt ettt st et s et sbe bt sre s e beae st esbeenaas ctype(3C)
character conversion, lower-case t0 UPPEI-CASEcccorriiriiiiieieriieiereeriereeresieeessee e conv(3C)
character conversion, non-ASCII to ASCII conv(3C)

character conversion, upper-case to lower-case .. . conv(3C)

character count e we(1)
character, description of special characters in terminal interfacecccecovivvivinceiiviiiinnninnnnn. tty(4)
character, push back into input stream ungetc(3S)
character, read from buffered open file . e gete(3S)
character, search for in Stringcccoveiiiiiiiiniii s string(3C)
character sets, NLScccceiiiiiiiiiiiiiiicnecicsciceceeci e ascii(7), kana8(7), romang(7)
character size, settings for terminal tty(4)
charaeter special file, Createc.ccccrireniniiicneniiicitee e mknod(2), mknod(1M)
character, write on buffered open file or standard outputccocoeveviiiiiiiniiiii pute(3S)
characters, count number contained in fileccoooviiiiiiiii we(1)
characters, process characters from regular expression .. regexp(7)
characters; translate into other characters ... tr(1)
Chatr i chatr(1)
chdit .ccecconnnnen. chdir(2)
check C program lint(1)
check: file foF 2CCESSIDILILYoueoueiiiiiiiiciiiieciiic eaccess(2)
check file syStem COMSISEENCY ...coviuiruiriiiiniieeiiiiicite ettt e ... fsek(1M)
check integrity of OS in SDF boot area(s) .. osck(1M)
check internal revision numbers of HP-UX filesc.ccceeviimininiiininiineiciicinccnicesenec e revek(1M)
check passWord and Group fIESc.ieveeeviveveieeeieriieis sttt seseesssess e s et sessssesssessansesenen pwek(1M)
checklist; list: of file systems to be-checked by fsck(1M) . .. checklist(5)
chgrp........ Uy T OO OO UP OO OO PO OUO RSP TO chown(1)
child:process, enable break-point debuggmg OF e e ptrace(2)
child:pracess, time execution-of ...l . times(2)

chﬂd proeess, wait. for: termination: of:. ... sh(1)
chmod(l), chmod(2)
chown(1), chown(2)
chroot (1), chroot(2)
........... chroot(1M)
i eiaiieesee e s ereet e e st e sereeae el ees et patsesae st sbebiatsa e a s s benas s chsh(1)
: . chsys(1M)
. nl_ectype(3C)
uuclean{1M)
fi clear(l)
. ferror(3S)
.. clri(IM)
clear(1)
clrsve(1M)
... ferror(3S)
. clock(3C)

.. date(1)

" close(2)"
close a file descrlptor ... close(2)
ClOSE-GIOUP I “...coviii il e getgrent(3C)
1056 0F fIUSR & SEIEAIIL «....iviiiuerieseueessisseeasiessesaes e see s st sses e see s s s st sass s s s s b s sss s ens e snces fclose(3S)

ndicator: on .open: ﬁle

clear tenmnal SCIEEN mnvsesnr

Permuted Index

€108 PASSWOTA 1€ .vevviuiieiieiieiieetcrie ettt sttt ettt sae et sae et e e nensbenne getpwent(3C)
close pipe between process and command ... popen(3S)
close-on-exec flag, get/set fentl(2)

Celrl clri(1M)
clrsve . clrsve(1M)
163 141 o SOOI cmp(1)
code portability between HP-UX implementations, typedefs forcccccovirveeienreenicnnenicncniennes model(5)
code segments, specify maximum number ofc..ccooeeuee. uconfig(1M)

€O ettt ettt bbbt a bbb sttt b e at st h e be bbb beene ... col(1)
collating sequence tables, NLS character set col_seq_8(5), col_seq_16(5)
collation, non-ASCII string, used by NLS ..ot nl_string(3C)
colon (:) command sh(1)
combine object files INtO PrOZTAINevviiriireeiiieeieereereestesee et e et e e e e st e ebe e eeeeeabeeaeeeneesaeeesaneensnen 1d(1)
comm comm(1)
command, create/close pipe between process and command_ popen(3S)
command, execute from program system(3S)
command, execute on another system uux(1)
command, execute uucp commands on local system uuxqt(1M)

command, execute with different root directory chroot(1), chroot(2)
command interpreter, standard ... sh(1)

command line options, parse getopt(1)
command, report error INformation fOrcecevriiiiiiciiiiiiiie it err(1)
command, run at lower or higher priority nice(1), nice(2)
command, run immune to hangups, logouts, and quits nohup(1)

Command Set 80 Cartridge Tape Utility teio(1)
command, set environment for env(l)
command SUDSEIEULION ..eceiviiiiieiiiiiiiiee ettt s sh(1)
command Summary: per-process acCoUnting reCOrdS «........eeweemuermueaiureerurerreenrueesrensreeseeeenses acctems(1M)
command, time the eXecution Ofcccciiieiiiiiiiiniiiic et time(1)
commands, execute at specified date(s) and time(s) . at(1), cron(1M)
commands, install in file system install(1M)
commands, process accounting acctcom(1)
common lines, find after comparing two files
€ommON 10GATTERIN .ooeiiiiiiiiiiiie et sttt e sae e et et ebeeenee

communication, establish interactive communication with another UNIX/HP-UX system cu(1)
COMNPACT wuveuririniiiiiteete ittt ettt ettt b e sttt bt et ebe s compact(1)
€OmMPAre tWO AIFECEOTIES ...eueeviriiiiiitiiiieiteteii ettt ettt ettt ee e st sae e diremp(1)
compare two files bdiff(1), emp(1), diff(1)
COMNPATE WO SETIIUES ceveevieriieiiiitiesieeiesteetieeestesstesteseesstestessesseesaaseeseessansaessessaessensenssanssensaessnesesnes string(3C)
compare two versions of SCCS file ... scesdiff(1)

compile regexp(7)
compiled term file format ... term(5)
COMPIIET, © oottt ettt ettt a et ce(1)
compiler development yace(1)
compiler, FORTRAN 77 fe(1), f77(1)

compiler, Pascal pe(1)
compiler: terminfo . tic(1M)
compiler-compilerccccovveiiinniinii yace(1)
complementary error function and error funCtioncccceceevveierieinineeieieee e erf(3M)
compress and uncompress files, and cat them compact(1)
compress and uncompress files, and cat them compact (1)
concatenate, copy, and/or Print f1soveeiriiiiiiniei et cat(1)
concatenate lines in one or more files .. e ... paste(1)
concatenate two Stringsccocceened ... string(3C)

conditional expressions, evaluate and test ... sh(1), test(1)

Permuted Index

COMEAG 1ottt config(1M)
configure an HP-UX system config(1M)
configure LP spooler system mklp(1M)

connect to remote terminal dial(3C)
connect-time accounting acctcon(1M)
constants and functions, Math ..o math(7)
construct a Bell file system bifmkfs(1)
construct file system on special file .. . mkfs(1M)
€onStruCt NCW fIle SYSEEIN .voviiiiiiiiiiiiiieiiiiic ettt newfs(1M)
contents of dIreCtory, JIStcciviiiiiiiiiiiciieii ettt et Is(1)
context-free grammar, create . yace(1)
COMEIIIUEC 1ovivviiiiiitit ittt ettt ee st bbb s ae s esems sh(1)
control characters, interpret ASA CAITIAZE ..occvvrviriirtiiiiiiierceieer e seen e asa(1)
control device ... ioctl(2), stty(2)
control-flow constructs, shell programming languaEc.c.ceceeeueirerrcieiireriiinierereereeeeeseae e neeeeeens sh(1)
conventional terminal namesc.coceceviininiennne . term(7)
convert archives to new formatcccceevne. .. arcv(l)
convert between 3-byte integers and long integers ... 13tol(3C)
convert between long and base-64 ASCII aB41(3C)
convert binary wtmp records into ASCILcoveeiiiriiieniiiirieeeecieee e fwtmp(1M)
convert date and time t0 ASCILcccoiiiiiiiiiiiiiiii e ctime(3C)
convert floating point value to ASCII string ... ecvt(30)
convert, reblock, translate, and copy a (tape) filecccooiviiiiiiiiiiiii dd(1)
convert string to double-precision IMEZETcc.iverreiiirieereriiirteieete et strtod(3C)
convert string to integercocecevenene. . strtol(3C)
convert tape fle ..o s dd(1)
convert termcap description to terminfo descriptionceceeceveveiiienieneiincieeceeineee captoinfo(1M)
copy an open file descriptorccccovveevciiiiiciniiennns .. dup(2), fentl(2)
copy, concatenate, and/or Print fIleScc.occoveeirieririiine et ee cat(1)
copy files between two systems ... uucp(1), uuto(1)
COPY {1185 OUL £0 TMEAIA +.eeuveierieieitieceie ettt ettt st s b e ea ettt be e e e teeaers e e saeraeeesbansaas cpio(1)
copy files while simultaneously editing them sed(1)
copy line from standard input to standard output line(1)
COPY, lINK, OF TNOVE fIIES .eriieiiiiieeeiiiiiiiciieciie ettt eeiee e et e e st e e e e taeeeeeaeeeeessbeeesaeeeassaaeesseseensseeeeasaneaeenns ep(1)
copy operating system from one or more SDI boot areas to anotherc.coceeceeveevcrnvecvcencneen. oscp(1M)
copy string string(3C)
COPY LAPE IO oot dd(1)
copy t0 0r from BIIF fIES ..ccceiiiiiiiiiiieireeee et sttt et bifep(1)
copy t0 or from LIF fIIeScoooiiiiiiiiiiiiiiiii s lifep(1)

core image, examine and/or modify for child process .. . ptrace(2)
core image file, deSCIIPLION Ofc.viouiriiiiiriieiii ettt sttt eae e e seesees core(5)

COS wevirrennnne .. trig(3M)
cosh sinh(3M)
cosine function . .. trig(3M)
€0Sine, hyPerbolicoicviiiiiiiii s sinh(3M)
CD ittt ittt e bt e a e e e eh e e h e s aae e eh e s ae e eabe e e e e bt e e bt e ehe e s e e e e et et e e eneen b s e saeees e s aeean e e eenneennee cp(1)
cpio .. cpio(1)
cpio archive format, description of cpio(5)
cpio archives, unpack/extract from 5.25” flexible diSCScceovirereriiiinnciiiiiireeeiece e

cpio archives, unpack/extract from Command Set 80 cartridge tape

cpset(1M)
machid(1)
creat(2)
mkdir(1)

Permuted Index

create @ directory file ... mkdir(2)
create a name for a temporary fileccccocviviiniiiiniiiin .. tmpnam(3S)
CTEALE @ TIEW PIOCESS ..viiveereiiniirtiitiieiseetensteeseetesaeesseasesaeeseensesseessessseaeessesateabe b sease st ssbensessssrnennestesnes fork(2)
create a special file entry mknod(5)
create an interprocess Chanmelcccccoiieiniiiiiiniincc e s pipe(2)

create and open temporary file
create cat files for the manual

... tmpfile(3S)
catman(1M)

create delta (change) for SCCS flleccocivieueriririreireniiiieecieee e eaeee e .. delta(1)
create device fllesocviiiiiiiiniiinecec e e mkdev(1M)
create directory, block/character special, fifo, or ordinary file mknod(2), mknod(1M)
€reate eNCrYPLION KEY .oeeeierieerieriieiieeeiiesec ettt et see st st e et se et e et et sbeesa s e bessaeneesnesnns makekey(1M)

create libraries, archives . et aes ar(1)
create link t0 file .occcovvreeriiinniieeeee . link(1M), link(2)
create message catalog file for modificationcccoevviiiiiiiiiiinii findmsg(1)
create MNEEAb taDIe .oooiiiiiiiiiiiiiec s setmnt(1M)
create new file, overwrite existing filecccoeviiiiiiiiiiiiiii creat(2)
create new operating system from ordinary files 0scp(1M)
create or change parameters of SCCS fIlesccceirieviiiiiieiiciinicii e admin(1)
create unique file NAMEcccoviviiiiiiiiiiiiiciiic e mktemp(3C)
creation mask, get/set for file sh(1), umask(1), umask(2)

CTOIL eoviviaieteniaste ettt eae ettt et sa etk e a s e et b s eaea s e s e bt et b e naeat s e s b e et e n st e bt ne et e R b st ea e et nesenee cron(1M)
crontab . . crontab(1)
CRT, facilitate viewing of continuous text ONccecovivieeiiiiiniiiiiine e more(1)

CRT, information about graphics devices with ...
CRT screen handling and optimization routines .

. graphics(4)
. curses(3X)

CTYDE cuvteteerteriteteeteeteste bt sutestaastassaasaeesaassess s e saaseassessaneseteensessssssassassaenaeeseesseeasensaentensaasansaessensnenen crypt(3C)
C-source error messages Mt0 & fIlecceeirueeriririeiriririeieci sttt et sreae st mkstr(1)
O ettt e et h et eeh e e bbb b e a e et s e eR et R e bt st et a et e R et eae e ct(4)

CEETTIIA .ottt ettt et b e btk ctermid(3S)
CEIITIE vttt ettt ettt b b e st et e b et h e s b bbbt et b ettt be b n et ctime(3C)
CU ettt et ettt et et b b et a e bt a e bRt a et h et ee et e s £ e he et oAt e b e e e b e s et e et s et e Rt ehteae bt s b et eteertebe s et ebeebenn bt enne cu(1)

current directory, print name ofccecceeviiirviennrennen.

current eVents, PIiNtccocvievierriineeceiieee et
current user idc.cceeeeeenee .
current user in utmp file, find ttyslot(3C)
current working directory, change ... cd(1), sh(1), chdir(2)
current working directory pathnamec.....ccccciiirieiiincniiicnieec e s getewd(3C)

current working directory, print name of pwd(1)
CULSES wvenvevemereneirnererseneseseeseseeseresseseneesessens curses(3X)
cursor handling and optimization TOULINESccceeveeriiriieriieeiee ettt e e e e curses(3X)
CUSETIA 1.ttt ettt ehe e sae e cuserid(3S)
cut cut(1)
cut out selected fields of each line of a file cut(1)
daily ACCOUNBINEG .eveurevieeiitiiteet ittt ettt ettt eae et sr et runacct(1M)
data access, long integer, machine independent ... sputl(3X)
data base, relational data base OPeratorcccccviicieiiiiiniiiiiiicc e join(1)
Data Encryption Standardcceu... crypt(3C)
data segment, change space allocation fOTc...cccoeevieiiriiiiiciinieniere et brk(2)
data segments, specify maximum number ofcccceceeeens uconfig(1M)
data types, include file defining data types for system €odecceceeirininiiiiiiniiiiieniineee types(7)
AALADASE BCCESS wuvvvuiuiiiiitiiciiie ettt ettt query(1)
datacomm, accept/reject files received through UUCD OF WULO ..evevveeerrereeriiirieerrieieeieieieereeeeerseeeeane uuto(1)
datacomm, copy files between two systems

datacomm, execute command on another systemccocoeiviiiiiiiiiniiii e uux(1)
datacomm, list of kKnoOwn SYStem NAIMEScccecevuiiierieiiniininece e uucp(1)

Permuted Index

datacomm, log of uucp and UUX transactionsccccciciveriniiieiiieneeie s uucp(1)
date ... date(1)
date and time, convert to ASCII string ctime(3C)
date and time, get MOTe PreciSelycoivciriiiiiiiiiiiiiiciec e ftime(2)
date, get/setooveiivieeeicnnnnne ... gettimeofday(2)
AEC, SEE 1virieteiet et et stime(2)
date, set ANA/OT PLIIE c.oceeveuiiiiiiiiiicieie ettt et date(1)
dates, reminder service for IMPOrtANTcccciviiieireererireieeei et e calendar(1)
AYHENE oo ctime(3C)
daylight saving time, time corrected for .. ctime(3C)
QA covevveeeooseesre oo ee e e eees e e dd(1)
deallocate a block Of MEMOTY ...c.coueiiiiiiieieiiiciireeeit ettt ettt s n s malloc(3C)
debug damaged file system fsdb(1M)
AEDUGEET ..ttt ettt bbbt eae et sasne e adb(1)
debugging, enable break-point debugging for child Processcc.coeevrirereriniencrniinceeeseeeenes ptrace(2)
decompiler: terminfocceerirererieeiereiieeee e .. untic(IM)
delays, settings and controls for terminal OUEDULcceveiieeniirirsieeieerie et et tty(4)
delta .ooeeeeeerreneeiiennne .. delta(1)
delta, add to SCCS file delta(1)
delta, change commentary 0f SCCScciciiiiiieiieeiiieee et ere et ese et eeteere e te s essessessessessesssaessessenes cde(1)
delta, inform user of any deltas being created for specific SCCS file sact(1)
delta, remove from SCCS fileccccoiiiiiiniiiiiiiinccs . rmdel(1)
demand loadable, set for Programcccoeiiiiiniiiiiii s chatr(1)
ETOME . e e sbene s deroff(1)

crypt(3C)
. environ(7)

DES password encryption
description of environment

description of /etc/passwd, pWA.h fIleS ...c..cecevrueuiieierininienirereteec e passwd(5)
description Of GroUP fIE ..cc.oiiiiiiiiiiiiieiie ettt group(5)
description of magic.h and magic numbers magic(5)
description of OS management COMMANAScoeeueiirierierieieiininieetr ettt ere e e osmgr(1M)
descriptor, CloSe fIIEc.cciiiiiiiiiiiiii e et close(2)
descriptor, copy/duplicate file . dup(2), fentl(2)
descriptor, get value of fileccoiiiiiiiiiiiiiii s ferror(3S)
device, description of hpib Interface t0oovceiviiiiiieiniiccieceec e hpib(4)
device driver, select virtual device driver uconfig(1M)
device drivers, IStoooiiiiiiiiiicc e s Isdev(1)
device file, create block/character mknod(2), mknod(1M)
deVice fIeS, CTRALE ...iiviiiiiiiiiiiiiirieicc ettt sttt n e e mkdev(1M)

device files, perform functions on ioctl(2), stty(2)

device names, pack/unpack for MKNOA(2) ..o.ooieeirieeerieieieee et mknod(5)
device I/0 Ibraryccccoeceevveevivceenenienenieeenennn gpio__*(3I), hpib__*(3I), io__*(3I)
devices, backing SLOTEoeiiiiiiiiiiiiic e vson(2)
devices, information about those with graphics Crt’scc..ccoevvieriirreeiienenrinenreeree e graphics(4)
GEVIIINL ottt et sttt b e ettt ettt nebes et ne et devnm(1M)
A ettt bt e b ettt aeae b h e bRttt e et neneanenen df(1M)
diagnostics, add t0 PIOZTAINcc.ccueivveereeriieriereeereeteeceeetreeteeseeteeseesseeseeeeereessesesreensenseesenseensessaenes assert(3X)
T 000000000 dial(3C)
dial out to a remote terminalccociiiiiiiiiiiii e e dial(3C)
dialup security control dialups(5)
diff e .. diff(1)
differences between files, mark ... diffmk(1)
differential file comparison, 3-way diff3(1)
... diff(1)

diffmk(1)

.. hpib(4)

Permuted Index

QICINID vttt et en diremp(1)
directory, change root for duration of command . chroot (1), chroot(2)
directory, change WOTKINGccccrvererieeneieeintinietere et esaete e sae e seneene . cd(1), sh(1), chdir(2)
directory clean-up for uucp SPOOL dIECLOTYeeveeruirierrieriiiirreeeetenrestieteereereense e eesaaveeaansas uuclean(1M)
IreCtOrY, COMPATE EWO ..vicverveeierisiereesietiieestesteeetessesseseseetessesseseesesseesesseeseesessessebesaesessensesseneeneees diremp(1)
QITECEOTY, CTOALE ..eevivireiiieiieciit ittt ettt n ettt eie mkdir(1), mknod(2)
directory, description of internal SDF fOormat Ofccceceoirireirieereeeriineniiineeereseeeeecresnesesee e naesenes dir(5)
directory, extract from path name (1)
directory, list contents of (1)
directory, list contents of LIFc..cccooiiiiiiiiiiiniiiict it (1)
directory, moveccoevvveiviiniieienenenn,)
directory, print name of current working pwd(1)
directory, removecocoeeiviiiinninen ... rm(1)
AITECEOTY, TEIMOVE .evnieviiiiiiiiiecieiciee ettt b e bbb n e se st et nessannis rmd1r(2)
dirname basename(1)
disc blocks, report NUMDET Of fIEEcciiiiiiiiiiiiiii e df(1M)
disc deseription flleccoioiiiiiiiiiiiiiiiiic et disktab(5)
disc drivers, information about blocked/unblocked interfacec....coeevivveeeereieieeecerieennerenes e disc(4)
disc initialization mediainit(1)
disc storage, Preallocateccoiiiiiiiiiiiiiiiicieeic et prealloc(1)
disc usage accounting by USEr IDc.ccoviiiiiiiinneciinineeieneeci ettt eeeer st diskusg(1M)
dISC USAZE, SUIIIMATIZE ..eouviruierriereeterieerteieitesteeteteaaesteeaessessestsnsesssanatesssasssasesssessensensesssensessesssesssenns du(1)
disc, write current contents of memory to sync(2), sync(1)
QESKUSE +veevererirereictcict ettt s a ettt s diskusg(1M)
display buffering, specify number of pages of ... uconfig(1M)

documentation, on-line man(1)
documents, print using mm macros . mm(1)
dot (.) command r———————— sh(1)
ATANA48 ...ttt ettt ettt btk e a et s e s s aeat et et eneran . drand48(3C)
driver, information about blocked/unblocked disc Interfacecccoeveveecrimmeriiieceercninercrcrinienennes disc(4)
drivers, ist deVICEcccoiiiiiiiiiiiiiiiiii et Isdev(1)
QU e e et b et et bbb bbbt et a e sneas du(1)
od(1)

QUINIPINSE .ottt et e sttt ea e e st e aesee st eat e st asaeeabe e benesanseeaseeneesaanssebeenseneensessesns dumpmsg(1)
QUD ottt e b dup(2)
QUP2 ittt te ettt ettt et e sae et e s ta et e et e s b e ba et e st et e erb e aeeet et e esaaeasebeetseteeneensetenbe st aesteanaetenteene dup2(2)
duplicate an open file descriptor . . dup(2), fentl(2)
duplicate open file deSCIIPLOTcviiiiiiiiiiiiiieiiecc e dup2(2)
...... ex(1)

...... ... echo(1)

.... echo(1)

COVE 1ottt et bbb et e b st et b e bt bttt bt et b et b e an ecvt(30)
16 OO PSPPSR ed(1)
editing activity, print for SCCS fileccccviiiiiiiiiiiiiiiii e sact(1)
€dItOr, SETEAIM EEXE ..eiviiuiiiiiiiiiieiiiic et e ettt sed(1)

editor, textcceeeviiiiiiiiiiinne 1), ex(1)
€AILOT, VISUAL EEXE .eeuvetiiiiiititctci ettt sttt eh ettt ettt ettt vi(1)
effective current user idcoccccevvuinnne whoami(1)
effective user/group ID’s, get for process getuid(2)
egrep ... grep(1)
EMS e et a e ettt a e b e ems(2)
EMS, description of ems(2)
emulation of asynchronous terminalcoceciiiiiininiiiiiece e aterm(1)

Permuted Index

enable swapping and PAGINGcccoceviiriiiiieiiiiice e e swapon(1M)
encrypt passwords crypt(3C)
encryption key, generate . makekey(1M)
CIUA. +euveniteirerteete ettt ettt e e et et h e h e b e a e b e st e et s b e et s Rt e b e b e ek b S b e e b e b e eeb e eR s Ra et s et s s eneenseene s end(3C)
endgrent getgrent(3C)
endpwent getpwent(3C)
env env(l)

environment, description of parameters and usage sh(1), environ(7)

environment, install parameters in sh(1)
environment, print current env(l)
environment, set for duration of one command env(1)

environment, set Up at 10GIN LIMEevveriieieiiiiiieceiciire et profile(5)
environment variable, get value of getenv(3C)
EOF (end-of-file) character, description of tty(4)
EOF, indicate receipt of when reading file ... ferror(3S)
EOL (end-of-line) character, description of tty(4)
eqn, tbl, nroff, troff constructs, remove from text deroff(1)

erase character, description of tty(4)
erf(3M)

erf(3M)

... err(l)

. errfile(5)

errinfo(2)

errinfo, report value for last command failure err(1)
errno errno(2)
errno, report value for last command failure err(1)
ERROR regexp(7)
error function and complementary error function erf(3M)
error handling, mathematical matherr(3M)
error indicator errinfo(2)
error indicator for SYStEM CALlScoviiiiiieeeiiiiritee e errno(2)
error indicator, reset status of ... ferror(3S)
error indicator while reading file ferror(3S)
error information on last command failurecccccoeeieeriiierrinincee e err(1)
error logging file for system errfile(5)
error message generator from C programs perror(3C)
etext ... end(3C)
EVAL ettt et b b ae bk ea e bt s a et s e b an et naat s sh(1)
evaluate arguments as an expression expr(1)
ex(1)

more(1)

EXEC evvivireneeetniense sttt et b s bt bbbttt ebe e ntene s . sh(1), exec(2)
EXECL 1ottt .. exec(2)
execle . exec(2)
execlp ... exec(2)
executable file, extract symbol table (name list) entries from nlist(3C)
executable file, get size ofccooiiiiiiiiii ... size(1)
executable linker/assembler output file, description of . a.out(5)
execute a file IN CUITENE PrOCESS ...coviiiireeriiiirieiiiieeiee ettt sttt b s s an b exec(2)
execute command at lower or higher priority . .. nice(1), nice(2)
execute command immune to hangups, logouts, and quitsccccevvriiiiieniininiiie nohup(1)
execute command on another system uux(1)
execute command using different root directory chroot(1)

execute commands at specified date(s) and time(s) . at(1), cron(1M)
execute commands from file ..o s . .. sh(1)

11 -

Permuted Index

execute new program in existing ProCeSSccoiviviiiiiiiiiiiiiiciiiic e sh(1), exec(2)
execute process with real-time priorityc.ococeviiiiiiiiiiiiiiii e rtprio(1)
execute HALGOL programscccccoeuue . opx25(1M)
execute uucp commands on local system uuxqt(1M)
execute work requests on remote SYStemcc.ccivviiiiiiinieniiie uucico(1M), uux(1)
execution profile, create for programcceeeene profil(2), monitor(3C)
execution, suspend process execution for time interval . .. sleep(1), sleep(3C)
EXECV cuttertenieteeuesseasesaestestessese et e ebe b ea e ae st e st et e b et e et et e st ek ek e h etk e e h e e b e s s e ek et b eh e bbbt b et st e e et eb et exec(2)
execve ... exec(2)
€XECVD wververrennene .. exec(2)
CEXIL wvetrenet ettt e bbbt en exit(2)
exit sh(1), exit(2)
exit from enclosing for or while 100Dovvveviiiiiiiiiiiii sh(1)
exp .. exp(3M)
EXPANA 1ottt et e b e st h st btk et et b b bttt e expand(1)
expand tabs to spaces, and VICE VEISAccoiireeiiiiiiiiiiiiiiieeriie ettt eee et s e expand(1)
exponent, raise 2 to a POWer frexp(3C)
exponential function exp(3M)
1513 0703 SO O OO O OSSOSO OO sh(1)
exXpr ... expr(1)
EXDIESEIVE ©vovvevverranresrenrensareereannss .ex(1)
expression, evaluate arguments as . expr(1)
EXTECOVET .vueetiatiaseetestetetestetestets et et s et s besses shesees bt e ebe b e st e s s eat e st s beese sh bt ebe b eb s e s nb e et b et enestssbe s et snnenaesns ex(1)
Extended Memory System deSCTIPEIONecceiiiereeiieiieriirierieeirerieeresieesiessestesssessesseensessessessnessessueesneens ems(2)
external symbols, examine execution profile for ... prof(1)
extract entries from symbol table (name list) of executable filecccocccirmivineiirniiiiinniinienns nlist(3C)
extract error messages from C source into a fileccccoceviriviiciiiiiiiinii e mkstr(1)
extract files from 5.25” flexible discs ... upm(1)
extract files from Command Set 80 cartridge tape archivesccooovieiiiiiiiiniiiic, upm(1)
extract files from Mediaccoceeviviiiiiiiiiii cpio(1)
extract portions of path names basename(1)
OO PO OO OO OTOOIN fe(1)
f77 see fe(1)
fabs oo floor(3M)
falSE evvveeieicee e true(1)
B ettt bbbt b bt bt b bt e s e e R e h bbbt a bt bt he bbbt b bbb n et fe(1)
FCLOSE ovivvitirietei ettt es fclose(3S)
FEIEL <o et fentl(2)
fentl(2), description of requests and arguments for fentl(7)
fentlh, deseription Ofccciiiiiiiiiiiiicc e fentl(7)
BOVE ettt eae ecvt(30)
fdopen fopen(3S)

feof ... ferror(3S)

ferror . .. ferror(3S)
fllush fclose(3S)
fgete gete(3S)
fgets gets(3S)
FETED -eveetirieieetesteiteetete e et et e st ete et e s s easa e e tesbenseabesseaeetebess et et b esae s bt b ent e st b e eR e b et s e R e b et b e s estebese s b e eaenbenbann grep(1)
fifo special file, Create ... mknod(2), mknod(1M)
file, assign another file name to already open file . fopen(3S)
file, assign buffering to OPENc.iiviiiiiiiiiiciece e setbuf(3S)
file attributes file, deSCIIPEION Ofooeiiiiiiiieiiiiticie e s fs(5)
file, buffered read from fread(3S)
file, buffered write to fread(3S)
file, change group ID Ofc.occoiiiiiiiiiiiiiiin s chown(1), chown(2)

- 12-

"

Permuted Index

file, change MOde Ofccoiriiuiiiiiiirieieee et chmod(1), chmod(2)
file, ChANGE OWINET ..ccoiiiiiiiiiiiiiiiiitec et s chown(1), chown(2)
file, change permission bits .. . chmod(1), chmod(2)

file, check revision NUMDET fOr ...c.cieiiiiiiiirieiiteeic ettt bttt eae st ettt revek(1M)
file, close a buffered open file fclose(3S)
file comparison, three-way differential diff3(1)
file CONLIOL .o ... fentl(2)
file control constants, file containing definitions of . . fentl(7)
file, copy LII in or out lifep(1)

file, copy to tape while performing certain conversions ... dd(1)

file, count words, lines, and characters contained thereinc...cccooivieereeriicenneeiniennie e we(1)
file, create and open LEIMPOTATYcccoiiiiuiiiiiiiiiiiienicin e tmpfile(3S)
file, create device/SPECIAlccccvieueciriiiiieieiirierieiete ettt mkdev(1M)
file, create or OVErwrite OFAINATYccociiiiieiieinieirci ettt et creat(2)
file, create or remove link to/from link(1M), link(2), unlink(2)
file, create ordinarycccccecevvennnee ettt er e mknod(2)
file creation mask, set sh(1), umask(1), umask(2)
file, description of buffered I/Occoviiiiiiiiiiiiiccc s stdio(3S)

... passwd(5)
. sccsfile(5)
fopen(3S)

file, description of password file, /etc/passwd
file, description of SCCS file format
file descriptor, assign stream to

file deSCIIPtOT, ClOSEc.cviiiiiiiiiiiiiiiic e close(2)
file descriptor, copy/duplicate dup(2), fentl(2)
file descriptor, create file POINEEr USING ...cceivirieririiiiieet ettt fopen(3S)
file descriptor, determine if associated with terminal . ttyname(3C)
file descriptor, get VAlUE Ofccceiiiiiiiiiiiiiiec ettt ferror(3S)
file, determine accessibility Ofcccccoiiiiiiiiiiii e access(2)
file, error logging file for system errfile(5)
file, find and/or remove duplicate lines in uniq(1)
file, find spelling errors inc..cccceeueeeee. ... spell(1)
file format, per-process accounting ... acct(5)
file, generate name for temporary . . tmpnam(3S)
file, get information about stat(2)
file, get/set status flags for fentl(2)
file, indicate the occurrence of an error while readingceceeivrviiiciiiniiiniiic e ferror(3S)
file, indicate when EOF is encountered when reading from ferror(3S)
file, locate in file SYSEEMccoiiiiiiiiiiiiiiicic e find(1)
file, moOve t0 NEW POSIEION TN ..cueiiiiiiiiiiiiiiiiciiic et s Iseek(2)
file name, create file name vs. i-node list ... ncheck(1M)
file name, create UNIQUEeccceevevieieeeeiieeieieienens . mktemp(3C)
file name, extract from path NAIMEcccoooiiiiriiiii et basename(1)
file name, find-special file for mounted file system on which file lies .. devnm(1M)
file name, generate for temporary file e .. tmpnam(3S)
file name, generate for terminal ctermid(3S)
file, open for reading OF WITLIIEccovivieereeiiircieeiertieeteiet e esee s seestesaeeabe e eeatessaesae et sbesaesbesnesnnns open(2)
file, open with assigned -bufferingccccceeevveeriennnnnnes ... fopen(3S)
file owner or group, change bifchown(1)
file pointer,: create using file desCriptorcocoiviiiiiiiiiiiinii e fopen(3S)
file pointer, move read/Write (SEEK) ...c.cceiriiririeeiiriiriceieie ettt Iseek(2)
file pointer, obtain for file fopen(3S)
file pointer, re-assign to another filecccociiiiiiiiiiniiiiii e fopen(3S)
file, print 1ast PArt OFcoooiciiiii e e tail(1)

file, put line length specifications in text files . fspec(5)
file, put margin specifications in text files fspec(5)
file, put tab specifications in text fllesccoeiiiiriiiiiiiiiiiiicc e fspec(5)

Permuted Index

file, read and execute coMMANAS fIOMcc.cvevirueeeririemeriiriieeeriiireit ettt ese et nene sh(1)
file, read and format data from scanf(3S)
file, read character from

file, read from

file, read string from .)
file, read WOTd fIOINLcveeviviiiiiiiiiitiii e)
FI1€, TEIMOVE .veuvieiniieeteieeteieitet e ettt ettt ettt se s s e e es et et e et eb s sa s e s et eme e et e b e nrebe et esemeebeneneasensenees)
file, remove a LIF)
file, remove extra new-line characters frOmc.cccoceeiiiiiiiiciinriniiic e rmnl(1)
file, remove selected fields from each line incccocvivviiiiiiiiiiinnc e cut(1)
file, remove selected table column entries from . weeeecut(1)
file, rename LIFcccoceviiiminneniiiencicnnen ettt ettt lifrename(1)
file, rewind before next I/O operation . s fseek(3S)
file SCANMET, DI .voviiviviiiiiieieticeet et bfs(1)
file, search contents of for specified String(s)ccccoivrmmriiiviiiiiiiiiiin grep(1)
file, set/clear set-user-ID, set-group-ID, sticky bits . chmod(1), chmod(2)
file size limit, GEt fOr PIrOCESS ...cevvirririeriiriiieeniiriere ettt ettt sae s e e e s asebn e s ulimit(2)
file, sort contents of ... sOTt(1)
file, SPIit INEO PIECES .veeueertieieeiiierectete ettt et ae et e br e b et e eeebe s bt e b enbashesmeeneesaesebesaesonnens split(1)
file system, backup file system on cpio archive backup(1M)
file system (Bell) consistency check and interactive Tepaircc.ceccevereeeeieriinniceenicneeneeeees biffsck(1)
file system (Bell) debugger biffsdb(1)
file system consistency check and interactive repairc.ccocvveceeieienreciniiinenieeeece e fsck(1M)
file system, construct on SPECIial filecciiieveeririereriiinieeeee e e mkfs(1M)
file system debugger fsdb(1M)
file system descriptor file entry getfsent(3X)
file system, find special file associated with ... devnm(1M)
file system hierarchy ... e hier(7)
file system, install commands incccoceevevrieneneee install(1M)
file system, list of those to be checked by fSCk(IM)cccooieveriirieriiiiiiiniiiiirccccceeeie checklist(5)
file system, mount or UNIMOUNEcceevviiiiiiniiiicciceccc e mount(1M), mount(2), umount(2)
file system name, get for MoUNtedccocevviiiiiiiiiiiii ustat(2)
file system pack name, get for mounted .. ustat(2)
file system shutdown Statuscccccoiiiiiiiiiiiniii fsclean(1M)
file system, table of mounted file SYStEMSc..ceeciriirierieriiirictre e mnttab(5)
file, system’s “bit bucket” SPecial flleccoireriiriiiiririiere e e e null(4)
file transfer: XMODEM protocol umodem(1M)
file transfers: KERMIT-DPrOtOCOL .c..ccoeeuerviiriirmieniiniienienienieeiesieeeeniteseenaeeseesaesanesnesanns ... kermit(1M)
fI1 £TEC WALK ..ttt ettt ettt ea et b et e se e ftw(30C)
file, update access/modification/change times of touch(1), utime(2)
file utilities, Bell Interchange FOITAtccceirierieriiiiiriiierc ettt et bif(5)
file, write Character ONOcccoiviiiiiiiiiiiiiiiicc e . pute(3S)
file, write formatted data Ontoccccoiveiiiiiinciic e .. printf(3S)
file, write LIF volume header on . lifinit(1)
file, WITte SEEIIE OO .uviveeiiitieteieietete ettt ettt st s e et eeeneen puts(3S)
BI1€, WITEE £0 ettt r e write(2)
file, write word onto pute(3S)
file-creation mode mask, ZEt/SEtccvuiuiieueuiiiiiieciiii e umask(1), umask(2)
FHIEIIO ettt ettt ferror(3S)
files, ArchIVe 0N BAPE ...ooveuiiiiiiieiiiiit e tar(1)
files, check password and group files pweck(1M)
files, compare tWoc..cccevererrieieneerininnne bdiff(1), cmp(1), diff(1)
files, compare two and create change DATSccccvviriciiiiiirciiiiiicereete e diffmk(1)
files, compare two and find lines common to both .. . comm(1)
files, compare two and find lines unique t0 €achccceiiiiiriiiiiiiiiiii e comm(1)

-14 -

Permuted Index

files, concatenate two or more .. TP s cat(1)
files, COPY .ovvvervireciriiririniiiiiicns ... cat(l)
files, copy and simultaneously editcocooiiiiiiiiii sed(1)

files, copy between two systems
files, copy out to media

uuep(1), uuto(1)
cpio(1 ;

files, description of /etc/profile and $HOME/ .profile . proﬁle(S
files, extract from mediacccoviiiiiiiiiiiiii)
files, format And PIIN ...cccoveeciiiiiierccie ettt sre et se et sa et she e saeeb st ae st ae s)
files, merge lines in one or more)
files, TNOVE, lINK, OF COPY -evereerrrrreiririeiiaieetienteeaestestesseeseeseessessaessessesssessssssessasnsessesssessensesseenseensensassees)
fI1eS, PIINE ©oviviiiiieee e 1)
files, unpack/extract from 5.25" flexible discscceovviirinnnnnins .. upm(1)
files, unpack/extract from Command Set 80 cartridge tape archives .. upm(1)
filter reverse line-feeds and backspaces col(1)
BN et ﬁnd()
find current user slot in utmp file . ttyslot(3C)
find duplicate lines in file ..ot uniq(1)
AN FIES vttt find(1)
find files in @ BIF SYSEEIM voiiiiviiiiiiiiiniciiicieeiiccr st biffind(1)

find name of a terminal .. . ttyname(3C)
find strings for inclusion in message catalogc.coceviiiriiiiiiiiiiiinicii e findstr(1)
fINAMSE oo .. findmsg(1)
FINASET vttt et ettt en et eaeeaes findstr(1)
fix manual pages for faster viewing with man(1) ...cccccveevmermeicciniiiie e fixman(1)
AIXINAI «eiiieieineeeee et fisman(1)
lag, ZE/SEt ClOSE-ON-EXEC ..ueeveviirriiiriereeetiiereer ettt eteate bbbt stesenesaeb et besesaes e aaesrenenensaessen fentl(2)
flags, mapping pwb/V6 UNIX terminal flags into current HP-UXccccevieivinniiiininniiinciinen, tty(4)
HAGS, SEt SHEIL ...ttt et et ettt ebe bbb bt e b et ae et sh(1)
flexible discs, unpack/extract files fromc.coeeeerieiirerniierr e upm(1)
floating point number, split into integer and fractional parts .. frexp(3C
floating point to ASCII conversionceeceeveeveecrinienennns ... ecvt(3C
floOr .o . floor(3M

flow graph, C, generatec.ccceevrueene. oo cflow(1
flush buffers associated with an open file . fclose(3S
fMOd it floor(3M
fold long lines for finite-width output device ...

NN NEPNS N NN -

TOPEI .eeieiiiiiiiieeciee et

for loop, exit from enclosing

for loop, resume the next Ieration Ofc...ecccieviiiiriiriiieie ettt sae e saeesreas

FOTK ettt ettt ettt e st e e bt e e s nb et e b e tneeaessaaae s

format and print files

fOrmMat C PIOGIAIIL ..eeuirierieriieieetiest ettt te st ettt ettt et e et e s b et bee b e sae e bt eb b et e bt entesmneesbesatsaeetne et ensessaennes
format, coOmpiled tErm fIleceeviiiirieriieeieiieiee ettt eae e

format data into string printf(3S)
format data on buffered open filecc.ccoceeveiniriiiniiiiiiieee ... printf(3S)
format data on standard outputccoocceeiiiiiiiiiiii e . printf(3S)
format, NIISt SETUCLUIE .o.viviiiiiiiiiiiiici ettt nlist(5)
format of an i-node, description of .. inode(5)
format of a.out file, description of a.out(5)
format of core image file, description of . .. core(5)
format of cpio archive, description of cpio(5)
format of library/archive file, description of .. ar(5)
format of SCCS file, description of scesfile(5)
format, privileged values privgrp(5)
fOrmat SDI VOIUINIE ...coveuiiiieiiitiiiitieiteiit ettt sttt ettt be b e sae bbb esnennane sdfinit(1M)

- 15 -

Permuted Index

format specifications, put in text filecccevierieriineeiiere e fspec(5)
format tables for NTOff OF tTOMF ...c.ccuiiviiiiiiiieiet ettt sa e tbl(1)
FOTINAL EEXE woveevieeiiitiitit ittt ettt e s nroff(1)
formatted output from varargs argument listcccooiviiiiiiiiiiiii e vprintf(3S)
formatted output with numbered argumentscccoveiiiiiiiiiiiiiii printmsg(3C)
formatter, text, simple ... adjust(1)
formatting text with the man mMacrosccveeveviiiriiiiiiiiicce e man(7)
formatting text with the mm mMacros ... mm(7)
FORTRAN 77 compilerc.cceeu.e.e. fe(1), £77(1)
IPLINLE oottt .. printf(3S)
fpute ..oeeenenn. ... pute(38)
fputs puts(3S)
fread ... fread(3S)
TR rvvvereeererereerietetere et aeee ... malloc(3C)
free blocks, find for mounted file SYStEMccooviieiviiiiiniiii e ustat(2)
free disc blocks, report number of bifdf(1)
free disc blocks, report NUMDET Ofocccoiiiiieriicciii e e df(1M)
free i-nodes, find for mounted file SYSTEIMcccceeieiiiiiiiiiniiiiirceec e ustat(2)
free MEmMOry SPACEcovevvevveuiererueieiirrennn memalle(2)
ETEOPEIL ..ttt ettt sttt ettt e b ettt b e a s a s ea s fopen(3S)
ETEXD wvveeentruetrteterteenteteseets et sae st tete st et et eb et esen et e s en e et e et et en e ae sttt e sttt s et b s et b sttt eneene et asntan frexp(3C)
... scanf(3S)

fsck(1M)

SCK ettt et h e e bt et ea et a et RS a et et eb e s sen et reeas fsck(1M)
fsck(1M), list of file systems to be checked by checklist(5)
ESCIEAN ..ttt e e ... fsclean(1M)
ESAD et e ... fsdb(1M)
fseek ... fseek(3S)
FSEAL wevenveneeneeitee ettt e e ... stat(2)
fstat(2)/stat(2), description of structure returned by these €allsc..cccceoeieiiiiiiiiiniiiiniiennne, stat(7)
TEEIL ceveveeieriiete ettt ettt ettt b e sb et enre e fseek(3S)
FEIMIE eeiniiieieietce e bbbt et b a s a e e e ftime(2)
FEW e .. ftw(3C)
functions and constants, Mathcoceviiiiiiiiiiinii e math(7)
FWEIte coveveeeiercccc e ... fread(3S)
FWEIND ettt ettt bbbttt b e bbb s ae e ae s h et h e be b s ae s fwtmp(1M)
BAIIIIIA o.veuvieitetereete sttt bttt b e bt a e b eh R b e s h e s b et e R b e b e s ea et e e s e aeeaeea s enee gamma(3M)
ecvt(3C)

BETICAL .viiviiiitietent ettt b bbb bbb et aenne gencat(1)
general terminal INEEITACEc..oiiiiiiiiiiiiiiie e e termio(4)
generate a formatted message-catalog file gencat(1)
generate C floW Sraphlccocoiiiiiiiiieiee ettt s e cflow(1)

generate encryption key .. makekey(1M)
generate uniformly-distributed pseudo-random numbers .. drand48(3C)
BEE ettt ettt ettt b bbbttt bbb a b h s et h et et bt s b bt en s e a e a e r e enn et get(1)
get date and time more preciselyccoeeiiiiinieiiiienns .. ftime(2)
get entries from symbol table (name list) of executable filecccoeomeviiiiiniiiniiciiicciii nlist(3C)
get file system descriptor file entryccceevevrieeerieirenneenne. .. getfsent(3X)

get group access listcocceeeeennene .. getgroups(2)
get message from a catalog ... getmsg(3C)
GO INESSAZE (UEUE eeeonveueeerirteriereetiseenseeteesesueessesssesseessesseeseesaessesssessessssssssseestsssaesseesessassssssssses msgget(2)
get name Of CUITent NOStcccoveiiiriiiiiiiieiciecce s gethostname(2)
get PASSWOTA fIl€ EIETY .vvivvieeeeiieeiirtietesteee e ctee et e see e b esaeess e aeesesresseese st enbeentensansaenaesees getpwent(3C)
get pathname of current working directory getewd(3C)
get real/effective user, real/effective Group IDSccccrriverirueuirinereerereeereinineeeee e getuid(2)

Permuted Index

get set of semaphores semget(2)
get shared MEMOTY SEZIMENLE ...ooviviiiiiiiiiiiiiiiii e shmget(2)
get special attributes for Groupoc.ooiiiii e getprivgrp(l)
B X.25 T 1ottt getx25(1M)
getc gete(3S)
GETC ettt et bbbttt ettt e ettt regexp(7)
BEECIAT ettt ettt et b e bbb bt e b a e st s e a e a e eb e bt sa et ettt gete(38)
getewd ... getewd(3C)
getegid getuid(2)
getenv ... getenv(3C)
BEERUIA 1eveveeiieniiitcce ettt ettt e bt getuid(2)
getfsent . getfsent (3X)
GEEEIA ettt ettt et et e et et e e bt e et e e sa e e e e et aeenarneenne getuid(2)
getgrent getgrent(3C)
getgrgid getgrent(3C)
getgrnam getgrent(3C)
BELETOUDS wevveteerteruietirurareieseteeteatesataasaessanseesses st estesbeantenseebesatessaes e stestestesaaeshesmsenseenseenesaensennee getgroups(2)
GELHOSENAINIE ..ttt s b gethostname(2)
getitimer ... getitimer(2)
getlogin getlogin(3C)
BEEIMISE woventititetittet et ettt ettt et a et e b et e e se et st s s e e st b b et e s b et e Rt b a b eb e e ne b et et eae bt e ettt ese s et eneene getmsg(3C)

getmsg, insert calls using findstring output . . insertmsg(1)
GEEODPE wevveveeeiirieiet e .. getopt(1)
getopt ... getopt(3C)

getpass .. . getpass(3C)
getpgrp getpid(2)
getpid ... getpid(2)
getppid getpid(2)
GEEPTIVETD eviieeeieiiieieeieiie et rteere e e getprivgrp(1), getprivgrp(2), setprivgrp(1M), privgrp(5)
BEEDW ettt b e bR er e e s a e e b e e ra e bt seae e eareen getpw(3C)
BEEDWEIIE ceeeiutiieieiitieteet et ettt et et e st teaeeteesae e be s s easassesseese e teseeeseentessesneeas e st eatebaeneerbebaenees getpwent(3C)
BEEDWILAIIL 1eeivviimieiiiiiit ettt st e e ettt e sbe bt e b e b e s b e ssse b e b e et e s e s ab e b s s be e sae e aer e eaee s getpwent(3C)
getpwuid getpwent(3C)
gets ... RO gets(3S)
get/set date and BIIEc.coccveuiiirmeceiiciee et gettimeofday(2)
get/set special attributes for group ... getprivgrp(2)
get/set value of Interval tIMErccccccciiiiniiiiiiiiicicic et getitimer(2)
gettimeofdayccceceveiinne gettimeofday(2)
BOEEY tentett ettt sttt ettt ettt ettt ettt e e b e et e et aeb e et b es s e b eesa e st e s senea et enae ekt en b e et e teententesheentaenne getty(1M)
BOLUIA vt s getuid(2)
getut . getut(3C)
BEEW ottt bbb b s h e e a e bRt b sae s a e getc(3S)
GEEX2D euviiiiiieeieet ettt ettt ettt sttt h e et et e b s e et e e R e e reea b e b e e e et e es e e st e nteteereenaeenns getx25(1M)

«o. ctime(3C)
GO0, TOTIFLOCAL 1ottt ettt ettt rae st e et e bt e st et et esabe s e b e et e et e e beeneeneenaeesaeenne setjmp(3C)
grammar, create CONEEXE-IEEccuiviiiiiiiiiiiiiiiiii e yacc(1)
graphics devices, information for those with crt’s . graphics(4)

..... grep(1)
... group(b)
. setgroups(2)
. newgrp(1)

group access list, set
group, change ID of user .

group file, €losecccevveeiiieeneenns getgrent(3C)
group file, description of /etc/group . group(5)
group file, read one lNe fTOM ..c..eciieeuieieeieieeecesteeeeeeeee et e e et e eae e s e saaesaesseesessssessnennes getgrent(3C)
Group file, TEWINA ...eovierieiiiiie ittt ettt et sa s et ee et sae e aeea getgrent(3C)

Permuted Index

group file, search for matching group IDcccocociiiiiiiiiiiiiiicic e getgrent(3C)
group file, search for matching group namecccccooveciiviiniiiniini e getgrent(3C)
group ID, change for file chown(1), chown(2)
group ID, change for user ... newgrp(1), sh(1)

group ID, get fOr PIOCESScoereiiiiiiiiiiiiiteiirie ettt s getpid(2)
GOUP ID, PIINE ceeiniiiiiiiei et id(1)
group ID, search group file for matching .. getgrent(3C)
Group ID, SEt .ot setuid(2)
group ID, set for process . setpgrp(2)
group memberships, Sshow <. groups(1)

group name, search group file for matching . getgrent(3C)
group/password file Checkers ..o pwek(1M)
BIOUDS c.vveevretiireteesteueautenteseessessteesesseesaeese e be s st e st esea st e be b sobesseset et e saeebeebt e nnes st st sae s e esaeansesbenneess groups(1)
group special attributes, get getprivgrp(1)
group Special attrIDULES, SEE ..eveririiriirieiiiiere ettt ee e s ene e sanenn setprivgrp(1M)
BIDCK ottt et et a et pwek(1M)
BIDE otk ettt h ettt b e et ea et s ae s group(5)

gsignal . .. ssignal(3C)
BB oottt h bbbt b e e b st saee st saea e e stty(2)
handling facility, variable argument list . varargs(7)

hangups, run command IMMUNE Occiviiviiiiiiiiiiiiii e nohup(1)
hardware name, getccccevernenn . uname(1), uname(2)
hardware trap numbers, ISt 0fccceviiiiriinireeice e trapno(2)
Dash SEAICH £ADIES ...cvevevviriueiiiiieieecteit ettt ettt ettt sttt hsearch(3C)
header, write LIF volume on file ... lifinit(1)
heap size, change fOr PrOGramcoccoiiviiiiiiiiiiiiiiiie et chatr(1)
BEID e e s e help(1)
help, get for SCCS routines ... help(1)
hexadecimal, 0CtAl AUIMIPeevoveriiiiriieiriiieee ettt et e et e raeesbeesne e seeeeneeeseeeseesneeeenneenee od(1)
BET e e ene hier(7)
hierarchy, flle SYSEEIM ..c.coeiirirueiriieieeirtere ettt tes et ee et hier(7)

host name, get .
host name, Setccoveveeiiiiineincnienen.

gethostname(2)
sethostname(2)

host system, set/print name of current . . hostname(1)
hostnameccccecevverinencne hostname(1)
hpib interface, AeSCIIPEION O vieiiiiiiieieieecieteee ettt e re et st ae e e se st sae e beemenseenneeane hpib(4)
hpnls hpnls(7)
HP-UX implementations, conditional compilation depending onccccceeeviviiiiiiiniiiiiniincnnnnens model(5)
HP-UX implementations, definition of constants which identify model(5)
HP-UX machine identificationc.coeeiiierieniiiiiininiicicieect ettt s model(5)
HP-UX revision information, etccccouveriiiniiiiiiiiinicinciicicnees e revision(1)
HP-UX version name, get uname(1), uname(2)

BISEATCH ittt hsearch(3C)
hyPErbOLC FUNCEIONS ..ovverteeuieiietieiiiteceeete ettt sttt sas e et eae et esbee e e b e e teeesbeeate st essesesnnen sinh(3M)
RYPOb veeviriieieeieie e hypot(3M)
hypotenuse, function for calculating .. hypot(3M)
B oo eeeeeeeeeeseomeee e eseeeesee e ee st sesesesee e e eeeeeseare e ereeeroeree id(1)
ID’s, set user and group setuid(2)
int, init(1M)
INIT .. regexp(7)
init(1M), control InfOrmation fOrcccecoimeriricetniierec e nne inittab(5)
INIEETOUDS -eeuveuiititieteiet ettt ettt eae ettt eeae s st e ae et et et e st et et es e e bt b et e st ebesb et e st e b enteneeseeneesennen initgroups(3C)
initialization of system state and processes .. init(1M)
initialize group access list initgroups(3C)
initialize hard disc, flexible disc, or cartridge tape mediacccccccveviiiinieniiiiniciiiiiccnins mediainit(1)

- 18 -

:/\ ‘

Permuted Index

initialize SDI VOIUIME ...cooiiiiiiiiiiiiiiiiciiiciceecc e e sdfinit(1M)
initialize terminal type and mode 0N I0ZIN ...ccecvereeeceerieriiiiriienierieteie st see st nesneeeenne tset(1)

INIEEAD eeiveieeeiiereeee e inittab(5)
i-node, clear i-node by zeroing it out clri(1M)
i-node, description of i-node formatcc.ceceueee. ... inode(5)
i-node, enable access to i-node for file SyStem IePairccvvveviviiiieniniiseci e fsdb(1M)
i-nodes, create file name vs. i-node list ...ooovevieiiiiiiiiiiinii ncheck(1M)
i-nodes, find number of free i-nodes in mounted file system ... ustat(2)
input and format data from buffered open filecccocociiiiiiniiiiii scanf(38)

input and format data from standard INPULccceeveeiereiiiiiiinie scanf(3S)
input and format data from string . scanf(3S)

~ input commands to shell sh(1)
input control, description of input control for terminalccccviiiiiiiiiiiiini tty(4)
input/output between process and command popen(3S)
input/output, description of buffered file stdio(3S)
input/output operation, get current byte offset of .. fseek(3S)
input/output operation, reposition nextc.cccecverieneniniiniceenne. .. fseek(3S)
input/output, output character/word to open file or standard output pute(3S)
input/output, push character back into input streamcoccccoevruennnne ungetc(3S)
INPUL/OUEPUL TEAITECEION .eveueuiririeniaiieirieieieteietcieieries ettt st nsrenene sh(1)
input/output, write string to open file or standard OUtPULccoovviveiiiiiiiiiiiii e puts(3S)
insert calls to getmsg using findstring output ... insertmsg(1)
INSEALL Leviiiii et e s install(1M)
install commands into file SYSEEIMc.cciciriieieciiiieietiiresiect ettt eb ettt install(1M)
install object files in binary directories cpset(1M)
integer, get largest integer smaller than x . ettt e s floor(3M)
integer, get smallest integer 1arger than Xccceceviviriiiioneceeeese e e floor(3M)

integers, convert between 3-byte and Longcceceeriiereriiniineniine e 13tol(3C)

integer trap Controlcc.ccooeeveriieeniecriernieeneeniee e intrapoff(3M)
integrity check of operating system in SDI boot area(s)c..ceoereveeeveinerieiiiniinienniieerieneenennnes osck(1M)
interactive IMAGE database accessccvveeceeriirvuennenne .. query(1)
interactively write (talk) to another user write(1)
interface, description of hpibcccecviviiiiiiiiiiinnns . hpib(4)
interface to blocked/unblocked disc, deseription ofc.ccooiviriiiiiiiiiiiiiicie disc(4)
interface to terminal I/O, deSCriPtion Ofcccoeerieieireriniiinciieecree e tty(4)
interleave factor, establish for SDF volume sdfinit(1M)
INterprocess COMMUNICALION, CIEALE ..ceviirierreerririeriierieeteeiieiteeeeeieneeaeesresieens et esaesaseanesaebsssbsesneenenas pipe(2)
inter-process communication facilities Statuscccceeiiiiiiiiiiiii ipes(1)
inter-process communication routines stdipc(3C)

interrupt character, description of tty(4)
intrapoffccocevviiine intrapoff(3M)
I/0 between process and command popen(3S)
I/0, description of buffered file stdio(3S)
1/0 operation, get current byte offset of . .. fseek(3S)
I/O operation, rePOSILION NEXE ..cc..coveeveirreririeiiiireeirieeeeeere sttt sae st s ens e e eneeaens fseek(3S)
I/0, output character/word to open file or standard OUEPULc.cceeevieererierinircniccene e putc(3S)
I/0, push character back into input stream ungetc(3S)
T/O TEAITECHION vvvuveveveeiireeteirtetee ettt te sttt ettt eb et eae st b ettt se st se st s e s ess e st s et et snenanenens sh(1)

I/O: GPIO routines (device I/O library)
I/0O: HP-IB routines (device I/O library)

gpio_*(3I)
. hpib_*(3I)

1/0: 1/0 routines (device I/0 LDIATY) .ccccoeuieiirnirieriincecir ettt s io_*(3I)
I/0, write string to open file or standard OUEPUL ..c.cevvveereeriiriiicieiereicree e puts(3S)
HOCEL oottt ioctl(2)

ioctl(2) system calls, description of tty(4)
T3 15T o OO OO RO OTUROPOO iomap(4)

Permuted Index

1513 o1+ OO OO O OO OO ORRRUROTRINE iperm(1)

IPES weutetenieteeteet et ee s ettt ettt et ettt et b bbbt e ae bt b e et bbb et e st R e a e s e e b e bt b s a e sa e a e a e ipes(1)
isalnum . ctype(3C)
isalpha ctype(3C)
RT3 ¥ OO UOR U UOR RO

ISABEY weeeneiierie ittt e s s b s aa s s n s e s eaes

iscntrl .

ISAIZI +evveenrenrrteitieeeeeie e et et e e e e e sseeeste e et e e s te e s e e e ne e s ne e b e st e s s se e n e s ae e e bt e et e nn e e sae et b n e et e raseneae

isgraph

islower ctype(3C)
ISPIIIE +evtieietirteetetet ettt et ettt aeete st e e e teae st e e b e besses e b em b e bese st saeebe b et esaeesensembentete e bt eteebenne ... ctype(3C)
ISPUINCE veeuvitietietieiesteettesseesiesaesestesssestesseessesesssssaeseesseentessassessaessessenssessesstensensesnsecasessesas ... ctype(3C)
ISSPACE .evvevrnrrrenerierennns ... ctype(3C)
issue identification fleccccoioiciiiiiiiiiiii e issue(5)
isupper .. ctype(3C)
isxdigit ctype(3C)
30 bessel(3M)
j1 . bessel(3M)
n . bessel(3M)
JOITL ettt ettt et b bbb et e ae b bt ee bbb st e b eae et ebteae e sn et an join(1)

join, perform join of two data base relationsc.coceeeveeveenenn join(1)
KANAS -.vnvreeneee ettt st s a s b s h b r s kana8(7)
kermit .o.ooveveieiiiiiiinns ... kermit(1M)
key, generate eNCIYPIONcccccerireerietiiiiirieeniteee et esree et e sre e rr e e esea e st eeeeesnesera s e saaesabeesaneas makekey(1M)
KILL ettt h ettt e et et h et et b bt ae et e b e be b et R A e ea st sae st kill(1)
kill character, deSCriPtIOn Ofcccoeiirieiieiierieiet ettt ettt st s tty(4)
KILAIL oottt ettt b s killall(1M)
L et s e b e e h e e bbb s a s e bbbt e aaens Is(1)
13tol 13t01(3C)
164a . . a64l(3C)
langid ... langid(7)
langinfo langinfo(3C)
language identification vAriablec..ceccecereerienircriert et sat et s langid(7)

language informationcccccou... ... langinfo(3C)
last-accessed time, update for file . . touch(1), utime(2)
last-changed time, update for filecccooiiiiiririiinciiicr touch(1)
last-modified time, update for filecccovemiiirininiiiiini e touch(1), utime(2)
T oo eeeeeeeeeseeee e seeeesesee e ees st eeeeessee et eeeereees oo 1d(1)
ldexp frexp(3C)
JEAVE ettt ettt sttt ea ettt et et h et a et et b E e ae bRt e b e s bbbt e aeeben e ens e ae e leave(1)
length of SErING, GEt .eoeveriiiiiiiiieiec e s string(3C)
IEX oo o lex(1)
lexical analysis of text, generate programs forcocevrviiiniinineniniiincnceens v lex(1)
libraries and archives, create and maintain ... ar(1)
library file format, description ofcccoveeveennenne .. ar(5)
library file format, description of cpio archive format ... cpio(5)
library, find ordering relation for object lorder(1)
library, table of contents format description ... ranlib(5)
LIF directory, list contents ofccoovviiiiiiiiiiiiiiiiiiiiiic e lifls(1)
LIF file, remove R . lifrm(1)
LIF file, rename lifrename(1)
LIF 1S, COPY 1M OF QUL eververurerrereereeeiesreesseessessessaessessesssessessesssessessansesssensesssensasssesssemsesneesseensesseonsns lifep(1)
LIF volume header, write on filecccce.e.. lifinit(1)
lifep lifep(1)
lifinit lifinit(1)

Permuted Index

lifls e lifls(1)
lifrename . lifrename(1)
BIEEIIL ¢ttt ettt ettt ettt e st et ee b b e bbb e s s b ese e es b s e re bt eae b et ea b e R et et ebebteebes e s ennenes lifrm(1)
HINE ettt line(1)
line, copy from standard input to standard output . . line(1)
HIE COUN wouviiiiiiiiitiiciicic ettt bbbt bbb et b e s sa et sb e sa e satsenenis we(l)
line length, put line length specifications in text flESccccovirceerierienirneniirieeeniereeere e fspec(5)
linear search and update Isearch(3C)
lines, count number contained in file ..o we(1)
lines, find common 1ines in tWO fIlEScciiiiiiriiiiiiiieiiee s comm(1)
lines, find unique lines in two files . comm(1)
lines, merge in one or more filesccoeevevieennnnn paste(1)
link link(1M), link(2)
link, COPY, OF TNOVE fIES ..viiieiiiiiiiriicie ettt ettt sttt sae s sae e ste et et eebeneessbesnnesasenne cp(1)
link, create to or remove from file .. link(1M), link(2), unlink(2)
HNK @AIEOT wovitiuiiiiitircic e e 1d(1)
link information utility, object files . linkinfo(1)
IINKET ©ovvrecieriieieieteeeess ettt s es et ane et 1d(1)
linker/assembler executable output file, description of .. a.out(d)
HNKINFO 1ttt linkinfo(1)
TIIE ottt ettt skt sa e)
list active processes in system ..)
list contents of BIF' dir€CtOrIEscvueeuiiiiuieiiriinieienir ettt et s s ifls(1)
list contents of AireCtoriesccoeviiiieviiiiiiii)
list contents of LIF directory ... lifls(1)
list current users on system who(1)
list device driversccovvecenurnenee .. Isdev(1)
list file names with associated i-nodescc.o..... ncheck(1M)
list spooled uucp transactions grouped by transactionc...cceceeevervesiireernieneneesiieeee e eeneen uuls(1)
list users and their current processesc..c.ccoeeue.. whodo(1M)
.. 1s(1)
... cp(1)
ctime(3C)

locate files N file SYSEEIL w.evueviiiiiiieiiiiiirt ettt et find(1)
locate source, binary, and/or manual for Programcccccerevernneriieinnecnee e whereis(1)
10CK oot .. lock(1)
lock process, text, or data in memory plock(2)
10CK BEITIIIIAL ...veiiiiiiiiiticte ettt ettt bbb st b et e et s e eae e st b e bebesb e bbb s ans lock(1)
LOCKE oot s lockf(2)
lock/unlock process address space or segment memlck(2)
108 woveiriieiei e ... exp(3M)
log gamma functionc.coceeeeeieviniininnnee. gamma(3M)
log results of work requests on remote system .. . uucico(1M)
10810 .ot ... exp(3M)
logarithm, COMIMION ...iiiuiiiiiiiiiiiiii et s a s s sae e exp(3M)
Llogarithm, MATUTAL ..ooiviiiiiiiiiiiic ettt ettt e s r et ae s exp(3M)
logging file for system errors . . errfile(5)
logging In 0N HP-UX ..ooiiiiiiiiiiiiiit ettt sttt e s asis e s naenesrne e login(1)
logical block, set number of bytes per logical Blockcccceviriirriniirieerieniciineeie e sdfinit(1M)
Logical Interchange Format desCriPtionccccecerierieeiiiniienieieetere st cseeeeate e sae st sae st saeesenensees 1if(5)
login . login(1)
login, establish baud rate and communication with terminal duringcceoeeeeveninniinnicnieennnns getty(1M)
10gIN NAMIE, BEL evevriiiiieieet et logname(1), getlogin(3C)
login name, get ASCII string representing cuserid(3S)
LOGIN NAIMIE, PIINE ..ovtiiiiiitiititietetet ettt ettt a ettt bttt sb e ebe bbb eb et tneebeeneneneas id(1)

- 91 -

Permuted Index

login name, record for each USer (ACCOUNBINE) ..oveverervereeeerueiirreeeiiirieeerirre ettt utmp(5)
login shell, change default chsh(1)
login time, record for each user (accounting) ... utmp(5)
TOBNAIMNE vttt bbbt sae st logname(1)
logouts, run command IMIMUNE B0cuiiiiiiiiieiiit ettt nohup(1)
long integer, convert to base-64 ASCII ... a641(3C)
long integer data access, machine independentcccceceviiiiiiiininiiiiii sputl(3X)
long integers, convert t0/from 3-byte INtEZETSeceveuerereuerireuiiriereinieteerertetriesesesereseiesesenetsseneaenenas 13t01(3C)
longjmp setjmp(3C)
LOTAET ottt ettt ettt h e b et h e e e bt b et et lorder(1)
lower-case to upper-case Character CONVEISIONcceurueverirueueucmresieriiiuiiiesneesnesesese s ssssesens conv(3C)
LS ettt et ee bbbt sttt ea s Is(1)

Isdev ... lIsdev(1)
Isearch Isearch(3C)
Iseek lseek(2)
Isf . . 1s(1)
lsr . Is(1)
LS 1ottt bbbttt b bbbttt h st a e bbbt ke eae bt b et et etk sstne e Is(1)
TEOIB vttt bbbt aen et 13tol(3C)

m4(1)
MACKIA Lttt bttt s machid(1)
machine ID, Getccoioiiiiiiiiiiiicie e uname(1), uname(2)
MACHINE PIOCESSOT LYPE .vveeurriruriiriierrttieitteeteecteestessbeseeeestessseesseessseeasseaasseessssesssessssesssessssansssenne machid(1)

machine-dependent values .. . values(7)

macro processor .. m4(1)
macros for formatting entries in the HP-UX Reference manual .. man(7)
macros for formatting text mm(7)
magic numbers, description of magic(5)
magic.h, description of magic(5)
magnetic tape, description of raw interface and controls mt(4)

magnetic tape, manipulate and/or position

... mt(1)
TINAIL coveeeieite ettt et e ettt e e b e et e e be e s ae s ae b e e e et aeeh b e e ae e e s et aensseenteessaennsenteesnneenttennne

maintain libraries, archives
maintain, update, recompile programs
TAKE woiviiiiiiiiereete e
make a BIF directory
make file system on special file ..
make posters in large letters

. bifmkdir(1)
. mkfs(1M)
. banner(1)

make unprintable characters in a file v151ble or 1nv151ble vis(1)
INAKEKEY .ottt ettt ettt eas . makekey(1M)
malloc malloc(3C)
00T LSOOI man(1)
man macros, description Of ... man(7)
manage binary search trees . tsearch(3C)
manage hash search tables hsearch(3C)
MAaNIPUlate WHMP FECOTAS .eevvviviirreerrieeeiitieeitteeieeiteeeteeteeeaesteeeaseessseesaesseessaeesseesnneessseensseessnees fwtmp(1M)
mantissa, get from floating PoInt VAIUEcoceeceiiieiiiiiiieieie et frexp(3C)

manual, create preformatted manual pages for on-line catman(1M)
MANUAl, ON-IINE Loviiiiiiiii e man(1)

manual page (on-line), locate for programc..ccceeevireneniecnencnnene whereis(1)
map characters into other characters during copy to standard output . .o tr(1)
mapping, physical addressc.ceveeiivviieveieiieeeeeeer e eeee e reens iomap(4)
margins, put margin specifications in text filesccoooeeviieriniiiiiin e fspec(5)

mark Command Set 80 cartridge tAPEcc.cveereeriirierinieiee ettt teio(1)

- 99-

Permuted Index

mark SDF operating system file as loadable/non-loadable .. . osmark(1M)

mark/unmark volume as HP-UX 100t VOIUINE ...c.ceuvveviuereririrurieiniesirnnseeeessseseeesessseeeseenens rootmark(1M)
mask, get/set file-creation ... sh(1), umask(1), umask(2)
master device information table ..o master(5)
math .o .. math(7)
math functions and CONSLANESovviviiiirieiiiiiiiiii ettt s math(7)
mathematical error handlingc.cceovieriiiiiiiiiiiieccecte e matherr(3M)
matherrcccvvvvenennenene matherr(3M)
MCB8000 ASSCIMDIETovviuiiriiriitiiiiiieic ettt st ettt ne b a s as(1)
TNEAIAIIIE ©veviiiiiiiitc ettt et ea bbbttt ettt e eae mediainit(1)
memadvise . memadvise(2)
memallc ... memalle(2)
memberships, show group groups(1)
mMeMCENMA e e . memchmd(2)
IEMATEE ittt ettt aenens . memalle(2)
INEINICK Leviiitiiiiteiieict ettt ettt ettt a bt a et ettt se st ee s et en et eae et ens memlck(2)
TIIBITIOTY uvieuieueeiteetiesteete e e e e he e b et e b e e s eat e e e s e et b e e ba b e a s e b s bbb ba e e b s e s b e eb st s e b e eba e b eabesbesbeeas e e e enne memory(3C)
memory, allocate & DIOCK Of ..coociiiiiiiiicieieieiete ettt e e et ee e e e e eanes malloc(3C)
memory, allocate for array . malloc(3C)
memory, change size of previously-allocated BlOCKccceeceeriirrieniniienineeierieseereree e saens malloc(3C)
memory, deallocate DIOCK O ..c....ceioieieieieieiiiiieieie ettt et et eneeseeas malloc(3C)
memory management, inform operating system about segment reference patterns . memadvise(2)

memory management, modify segment lengthcccocooviiiniiniiiiniicninicnee. ... memvary(2)
IMEMOry OPErationsc...ccceeeeeirueruenerreneevenns .. memory(3C)
memory segment access modes, change . memchmd(2)
memory space, allocate and free . memallc(2)

memory, write to disc sync(2), syne(1)
memulck memlck(2)
memvary memvary(2)
merge contents of SEVETal flES ...cccuiviriiiiiiiieiieieeieer ettt et neea sort(1)
merge lines in one or MOTe fIlEScccoiiiiiriiiiriici et paste(1)
merge or add total acCOUNLING flES .c.eeeiiivieriiiieeeeiteet ettt et acctmerg(1M)
mesg mesg(1)
message catalogs: MPE/RTEccccoiiiiiiiiiiniiiiiiniiiniiect ettt sae st s e catread(3C)
MeSSage CONEIOl OPEIALIONSvivveeiiiiiirtiiitirieteitetet ettt sttt ettt eae sttt e e bt seeb et eebeeaee s ennen msgetl(2)
mMessage OPErationsc..coceveeveveeeeereenne msgop(2)
messages, permit/deny to your terminal mesg(1)
messages, read or send to other users mail(1)
messages, Send t0 all USETScceoueiriiiieeinienieieeeenee e v wall(1M)
messages, send to another USer INtErACtIVELYccovievveriiriierieeiieiiere ettt aee write(1)
.. mkdev(1M)
mkdir(1)

mkdir(2)

... mkfs(1M)

INKID oottt st et e bt e e nn e e e bt aasaeen s e e aaes st eesa et en st aeneeeenrnean mklp(1M)
INKNOM <ottt et ea e sttt et eae et ene mknod(2), mknod(1M)
mknod.h, deseription Ofccccooiiiiiiiiiiic e mknod(5)
MKSEE oot ... mkstr(1)
MKEEMD et . mktemp(3C)
ettt bt heh b e a et bR e b b e b et b b et e At e bt et e e Aot eb e ek b et a e et e et it e at et e ebeebeeneeaeas mm(1)

mm macros, description ofc..... .. mm(7)
mm macros, print documents formatted Withccccceiieiiiiiiiiiic e mm(1)

MNtEAD 1ADlE, CTEALEeouiiiiiiciii ettt setmnt(1M)
mnttab.h, description of mnttab(5)
mod function, f0ating POINL «..cc.eeeiriiiiierieie ettt st floor(3M)

-923-

Permuted Index

mode, change for fIleccoviivviriniiieiici chmod(1), chmod(2)
model, Native Language SUPPOTtcccoviiieriiiiiiiiieiiiiiiien et hpnls(7)
model.h, description of model(5)
modemco.oeeiiinniennnnn modem(4)
modem control special file . .. modem(4)
IOGL et .. frexp(3QC)
modify parameters of SCCS files admin(1)
modify segment length memvary(2)
£010) 1117 e) OO SO PO SORROTN monitor(3C)
IMONILOr WUCP NEEWOTK .veviiiiiiiiiiiieieiicre e e ebe e s uusub(1M)
more more(1)
TIOUNE +evevvetenitetisitetes ettt e r bbbt b e et e s e b e e bbb e ts et bebaaeteae mount(1M), mount(2)
mount or unmount file SyStemccoovviiiiiiiii mount(1M), mount(2), umount(2)
mounted devices, create table of ... setmnt(1M)
mounted devices, table of those mounted by mount(1M) . .. mnttab(5)
mounted file system, find special file associated with devnm(1M)

mounted file system StatiStICsccovviiiiiiiiiii e ustat(2)

move a directory mvdir(1M)
move, HnK, or COPY TS .ooviiiiiirieiiie et e cp(1)
move read/write file POINtETr; SEEK ...cccoevirveiririeiiiecriici s Iseek(2)
move to new working directorycccoveeeoiiineiniieiiii e cd(1), sh(1), chdir(2)
msgctl msgetl(2)
msgget msgget(2)
msgop msgop(2)

mt(1)

ssp(1)

cp(1)
IIVAIE ©etiitietet et ettt e ebe b e ea e s e bttt a e s R e et bbb sa e et b e ea st a e a bt eae mvdir(1M)
name, get 10GIN ..cococveeiiiiinieiiirieinee e . logname(1), getlogin(3C)
name list (symbol table) extract entries from executable file’s name listccccoeviininiiinienini nlist(3C)
name list (symbol table), print from object filecooviveiviiiiiiniiiii nm(1)
Native Language Support modelccccovvirececrnnnn .. hpnls(7)
natural logarithmc....... ... €exp(3M)
TICHECK ettt bttt h et a bt bbbt s en e ncheck(1M)
network, monitor UuCP ACIVIEY ON vocveviiiiiiiieiii e uusub(1M)
network special file, create mknod(2), mknod(1M)
NEW file SYSTEIN ..ottt e newfs(1M)
TIEWES cvevititetiiiet it bbb bens newfs(1M)
DIEWES 1ottt bbb bbb aee newfs(1M)

newgrp . newgrp(1), sh(1)
new-line character, deqcrlptlon of tty(4)
new-line characters, remove extras from file rmnl(1)
news news(1)

news(1)

news, print current events

TCE vttt ettt nice(1), nice(2)
TIHSE ettt ettt st et es e e bbb sa e b sh et eresaa et nlist(3C)
DlISt SEIUCEUTe FOIMAt ..eoviveieiiiiiiiiiiire ettt s nlist(5)
NLS character classificationcoccoieeriiiienniiieieitece et nl_ctype(3C)
NLS character set collating sequence tablescoceevevvvireeirieiincieniinicniinnennns col__seq_8, col_seq_16
NLS character sets . ascii(7), kana8(7), roman8(7)
INLS MOAEL «neviiieriiieretienirieie ettt ettt sttt ettt b e s st ettt et st st be e enes s snenesssben hpnls(7)
NLS native language IfOrmationecceeiveeevieeirersienieniceit ettt eniee st eeee e esreeseeseseeeesneens langinfo(3C)
NLS non-ASCII string collation ... nl_string(3C)
NLS translate characters nl_conv(3C)
DL SEEIIE vvenieetcriirt ettt ettt st et b b nl_string(3C)

-24-

r\

Permuted Index

1 ¢ OO nm(1)
nodename, getcoevevereeererernnnes revision(1), uname(1), uname(2)
nodename, set/print Name Of CUITENEcoevirereeriiienieieiiiet ettt hostname(1)
TIOMUD 1.vtivieiicieeitieit ettt et et et ettt e e sae s e ere e neetseebee s eabeetaeeteeasenseetaes s e st enbasaenserensaeateesnenee nohup(1)
non-ASCII string collation used by NLS
IITOME et
nroff, format tables FOroiiiiiiiiieei et e e e e
nroff, interpret output from nroff for printing
nroff, troff, tbl, eqn constructs, remove from tEXtccccverveieieeriieniiericeree et saee e deroff(1)
numbered-argument print output formattingc.coceveiiiiiiiiiin printmsg(3C)
object code, locate for program whereis(1)
object file, dEDUZGEET fOrooverreiriirieriiietet ettt et ettt et sae b s ae s eaeebaeae s adb(1)
object file, extract symbol table (name list) entries frOmcccoeverirueercirnierciieeeeeceee e nlist(3C)
object file, Bet S1Z€ Of ...ccuiviiriiiiiiiieit e e st size(1)
object file link information utility linkinfo(1)
object file, print symbol table (name list) Ofccceouiriiiveeiiiiiniiiiiee e nm(1)
object file, remove symbol table and relocation bits from strip(1)
object files, cOMbINE INtO PrOGTAII ...eecveeviirierietieieieeteiertete st e ettt ettt s seeeeste s e e ebeeebe s et seeesnessaenaes 1d(1)
object library, find ordering relation for lorder(1)
octal, hexadecimal AUIMP ...c.ccviriiiiiiiiniic ettt od(1)
od(1)
man(1)
on-line manual, create preformatted manual pages forcccoeeiiiniiiinininiine catman(1M)
OPECIL 1ovtinriintintiete ettt ettt b et et e b e b e sbeeae e s b e et e b ae e ek s e s e s e she s b et e bt e s b e s b e bR e e b e an e Reeats open(2)
open a file and assign buffering to it fopen(3S)
open file, assign buffering to setbuf(3S)
open file descriptor, AUPHCALE ..ec..eveeeierieriirienierteie et et s e stestre b e sae et ebes e be e b sessesbesanesbessne dup2(2)
open file for reading or writingccceeviviiiiniiiininn .. open(2)
operating system, append to an existing operating system oscp(1M)
operating system, change to different OS or different version of same OS . . chsys(1M))
operating system, check integrity of OS in SDF boot area(s)ccocevvremieririenininniinesciecenenens osck(1M)
operating system, copy from one or more SDF boot areas to anotherccccevevivvivriceicnniniennns oscp(1M)
operating system, create new operating system from ordinary files oscp(1M)
operating system management package descriptioncccceciiiiiiiieiiniiiiniiiiiii s osmgr(1M)

operating system, mark as loadable or non-10adableccoeccveririerieniiinieneeie e osmark(1M)
operating system, shut down OS with optional re-boot . . stopsys(1M)
operating system, split into one or more ordinary files oscp(1M)

getopt(3C)

... getopt(3C)
optimization routines: CRT screen and cursor control curses(3X)
OPEINA .eviiiiiiiiieiee e ... getopt(3C)
option letter, get from argv . getopt(3C)
options, parse command HNecccociviiiiiiiiiiiniiiii ... getopt(1)
options, set for terminal ... stty(1)
OPLIONS, St SNElloiiiiiiiiiiiiiiiiie e sh(1)
OPX2D oottt ettt h bbb e R b s bbb reas opx25(1M)
ordering relation, find for object library or archive file lorder(1)
OrdINArY flle, CrEALEioviviiiiiriieiieiert ettt ettt s a s mknod(2)
ordinary file, create or OVEIWITtEcccociviiiiiieeiiiiiiiiieiicic e s creat(2)
OS, append to an existing operating systemc.c..... . oscp(1M)

. chsys(1M)

0S8, change to different OS or different version of same OS
. osck(1M)

OS, check integrity of operating system in SDF boot area(s)

OS, copy from one or more SDF boot areas to another oscp(1M)
OS, create new operating system from ordinary files oscp(1M)
OS management package deSCriPIOnceveevieriirieeiiinieiiiiieeien et osmgr(1M)

Permuted Index

OS, mark as loadable or NON-10adaDIEcveciuiviiiiiiiiiicecet s osmark(1M)
08, shut down operating system with optional re-bootccceeviiriervirieiienciiieniccnrieeienne stopsys(1M)
08, split operating system into one or more ordinary files ... oscp(1M)
OSCK oottt ettt bt et b et e bbb bbbt s aeaeebe e e enent s osck(1M)
LGS OO oscp(1M)
osmark osmark(1M)

osmgr .. ettt nes .. osmgr(1M)
output character or word to open file or standard output putc(3S)

output, description of formatted/unformatted output to printer ... Ip(4)
output, description of system handling of terminal outpubtcocceeeviieriiiiiiiiiiiiiiiceies tty(4)
output, print formatted data into sStringcccoceeveennene .. printf(3S)
output, print formatted data on buffered open fileccceveiirieiiiiieiriiiniceiee e printf(3S)
output, print formatted data on standard OULPULcccceeeierieiiiirieninieret e printf(3S)
output string to open file or standard output puts(3S)
overlay program onto existing process and €XeCULEcccccoiveriiiuerieniirieieriiinenieicene e sh(1), exec(2)
overview of accounting commMANSocceviiriivuiniiiirieieiietcn e acct(1M)
owner, change for file chown(1), chown(2)

DABE ettt ettt ettt et h e h et bea et a et bt ten et e s e Rt e Rttt e b a e be b es s eae At ebe b en et tesbeneeneebeneenes more(1)
page size, set for paged data . . uconfig(1M)

paged data, Set fOr PrOGIAINcoceervirtereaiireerietieste ettt test et e st et sabe st e s ba s ee s e sseeesessassaessessenaeenees chatr(1)
paging and swapping enable .. . swapon(1M)
PAM ottt b bbbttt a e a e aes pam(1)
parameter SUDSEIEULIONc.iviiiiiiiiiiiiiiiic e sh(1)
Parameters, eNVIFONIIEIILccueuiiieruiterietenteiirtesteseetettsaeeset e beaeetestaeaesbesbesesesseneesensessennes sh(1), environ(7)
parameters, install in environment .

parameters, Mark as TeAAONLYcovivieiiiiieiiieee e et as
parameters, perform left-shift on positionalccceceviireriiiiiinininnc e sh(1)
parameters, set for terminal
parameters, set for terminal 0n 10GINoueeueeeriirieeiiiete e ettt tset(1)
parent process ID, get for process getpid(2)
parity, settings for terminal e tty(4)
parse command line options .. getopt(1)
Pascal COMPILET ...oouiriiriiriiiiieiiititeiet ettt sb sttt st ea e s bt e ettt a e st pe(1)
PassWd .cc.cceeierenennene. passwd(1)
password, change login passwd(1)

password encryption .. . crypt(3C)

PASSWOIA fI1€, CLOSE .uvveriveeeiiiesieeeitieeieecie et ereeete e et e e ae e e e e aeeseeesaaeesaeeseasaesseeenseesseeenanensaennne getpwent(3C)
password file, deSCIIPEION Ofcoveviiviiueriiiinieiiiririe ittt passwd(5)
password file, get line containing matching user ID getpw(3C)
password file, output line similar to those contained inc.cccoeveevcirivcenininencniceeiccienen putpwent(3C)
password file, read one line fromccovveeririiriiiiinieneeieircert ettt getpwent(3C)
password file, rewindccooevveieniirienians . getpwent(3C)

password file, search for matching user ID ...
password file, search for matching user name
password, read from /dev/tty or standard input . .. getpass(3C)
password/group file checkers . pweck(1M)
PASEE ettt sttt b et et a e b bttt e a et et eh e bbb paste(1)

.. getpwent(3C)
. getpwent(3C)

path name, get for terminalco.coeeviiiiiiiiiiiesece et ttyname(3C)
path name, isolate directory name fromoecoceeereiirieiniieierteee et se s eseenes basename(1)
path name, isolate file name from . basename(1)
pattern, find and process Within teXtcoocevveeviiirieriiiiiirericeee e awk(1)
pattern, search contents of file for

PAUSE cverrereneierenerenrneeensesesienessenenns

pause, suspend process for interval
SO OO TSP OO OO TP TP pe(1)

Y

Permuted Index

... popen(3S)
regexp(7)
periodic, automatic sync syncer(1)
permission bits, change for file . chmod(1), chmod(2)
per-process accounting file FOrMAtecverivirieeiuerierierie ettt ete et ec et st be e sreeaeeesrees acct(5)
PEITOT oveuieuteieeeneneeteataesesiessesssevesneseensanens perror(3C)
personal applications manager, a command shellcccoocevieriiniiniiiniiiie s pam(1)
physical address mapping iomap(4)

pipe pipe(2)
pipe, create/close between process and command popen(383)
pipe, get intermediate data IO ...ocieeiiiiereriiiic et s tee(1)
pipeline, createc..ccecveneeniienneen pipe(2)
pipeline, get intermediate data from tee(1)
place error messages from C source into a file mkstr(1)

PIOCK itiiieieieeeeetesie et e . . plock(2)

plotter, description of hpib interface to ... hpib(4)
popen popen(3S)
port, database listing terminal type connected to each ttytype(5)
portable code between HP-UX implementations, typedefs for model(5)
position magnetic tape : mt(1)

positional parameters, perform left-shift on sh(1)
posters, make using large letters banner(1)
POW eveviiiienriiene exp(3M)
POWET fUNCEIONL ettt ettt et st b e s sa s eb e reen e exp(3M)

powerfail bre(1M)

pr(1)
prealloc ... prealloc(1)
preallocate disc storage ...

prealloc(1)
preprocessor for C compiler ... cpp(1)
print and format files
print and summarize an SCCS file
print arguments after shell interpretation
print, copy, and/or concatenate files
print current SCCS file editing activity sact(1)

print documents formatted with mm macros mm(1)
print effective current user id ... whoami(1)
print formatted data on standard output, open file, or string printf(3S)
print formatted output from varargs argument list ... vprintf(3S)
print formatted output with numbered arguments . printmsg(3C)

print last part of filec.cooooniiniiniiiiiii ettt tail(1)

print list of users and their current processes whodo(1M)
print name list (symbol table) of object file nm(1)
print name of current Working dir€CtOryccceeireiriciniiiiiiiienc e pwd(1)
print news itemscoccoooveeinnnne. .. news(1)

print time and date date(1)
print user, group IDs and names id(1)
printer, description of formatted/unformatted outputccccccoviiiiiiiiiiiiiii Ip(4)
printer, description of hpib interface to ... hpib(4)
DTINEET OPEIOMIS, SEE cuvervieerrieirirririirseetestestietteseetesseestesseesasssesssaseessasseeaseesseessesssensessesssssensessensessseensenes slp(1)
printf printf(3S)
PrINEIMSE oovvveiiiieieeeeniiseeeirceenn .. printmsg(3C)
priority, run command at lower or higher nice(1), nice(2)
privileged values format privgrp(5)

procedures: shell procedures for accounting
process accounting

.. acctsh(1M)
acctpre(1M)

Permuted Index

Process acCOUNtiNng COMMANMSvereerrereriueierierieererresseesseesesteseassessesssesseesesssessesssessassesssessessesse acctecom(1)
process and system state initialization ... init(1M)
process, change data segment space allocation for brk(2)
process, change root directory ofcoccoeieriiiiiininininen e chroot(1), chroot(2)
DIOCESS, CIEALE 8 TNEW .e.vuvviuiiitisirteseteeeeeeseerereats s e saese e sasse e s b s e st e st st st et bebe et eresaasseessnentens fork(2)
process, create/close pipe between process and command . popen(3S)
process, enable break-point debugging of child process ptrace(2)
process, format of core image of terminated process core()
process, get ID, group ID, and parent process ID ofc..... . getpid(2)
process, get real/effective user and real/effective group ID’s for getuid(2)
process, get/set file size mit fOrooeevceeerereneriniieeenieennns ... ulimit(2)
PLoCesS GrOUD D, SEE .ouveeriiriiriieiicieeieieietete et e ste et e te st e e teesbebaeseesaesbaessessessbessesstestessenstesrnasens setpgrp(2)
process, lock/unlock address Space or SEEMENtc.e.eerreerirrererueemiiiriiiesre et seeeae memlck(2)
process number, get getpid(2)
process, overlay new program Onto eXiStiNgcccececivererieierciiniinieineneeet e sh(1), exec(2)
process, print accumulated user and system time elapsed forccccevvirviiiiiiniiinni e sh(1)
process, SeNd SIGIOT 0 ...ccoviiiiiiiiiiiiiiiiir e abort(3C)
process, send signal to kill(1), kill(2), abort(3C)
process, set Group ID fOrooioviiiiieiiiere ettt ettt st e sttt an setpgrp(2)
PLOCESS SEATUS, TEPOTE .eevvirreeriiitiiiteetietiieieniestestee ittt e te et ereteaeasbesees bt seease e beeatessbasesssenseasaensansesnsansesssanas ps(1)
process, suspend execution for interval of time . .. sleep(1), sleep(3C)
process, suspend UNtIl SIGNAL c..ioviiiiriiiiieerieieeeeee ettt et eeaee b e seeearenneens pause(2)

Process, termMINAteeccevereirrerertruereriereentnreiiieseeeereseesenesieseeseneesennas kill(1), sh(1), exit(2), kill(2), abort(3C)
Process, time exeCULION Ofccoviiiviiiiniiiiiiiit ettt times(2)
process, wait for completion of sh(1), wait(1), wait(2)
ProCesses, list ACLIVE ..ovviiviiiiiiiiiiiicci s ps(1)
processes, send signal to all USEr PrOCESSESccovviecririeriuerniirineiiiiiee et killall(1M)
processes, specify maximum number of processes per user ... uconfig(1M)
processes, terminate all user processesc.ccooceveiivinennne shutdown (1M)
PTOCESSOT EFDE ovvvviiiiiiiriitiiitiieii ittt ettt ettt s ab s e st be e e e e sabese st bbe s s sasbaeseenneesbbaesaneaesiabasaeans machid(1)

prof prof(1)

DLOBL ettt ettt et et e e st et e e st et et e eke e b e st s et e et e e s te et eabeseenneateshesbbenabarbaan profil(2)
profile, create for program during execution profil(2), monitor(3C)
Drofile data, dISPIAY ...ccvecvieierieiiieeieeesteee ettt eete et e saeessesse e e e eaaeaseebeeseenteesaaeseteseeee s e e reenteereebaas prof(1)
profile files, description of /etc/profile and SHOME/.profilec.cocccceiveneais profile(5)
program, add diagnostics t0ccccceeeveeriverveecienieenieennen. . assert(3X)
program, change internal attributes Ofccccoviierviiiiiiieriiieecc e chatr(1)
Program, CheCK/VETIEY C .ovvvviiriiieieiriiirieiecisete ettt e st e bttt tesa et ese s etasssaensasasennnnes lint(1)
program, create execution profile for profil(2), monitor(3C)
program, create from ObJECt fIIESueceriiiiriiririrene ettt et et sae e s se 1d(1)
Program, dEDUEGEET FOIccceeriiriiriierieiiieieiieriesreetest et e e e tesae st aessaessessasstessassaseseasseseessassassessessaensensen adb(1)
program, execute command fromc.cccoeeeriiiecennnns . system(3S)
program, force action associated with signal to be taken ssignal(3C)
Programy, fOTMAat C ...ccooiiiiiiiiiiiiteiiiieeee ettt sete e st e e s bt s be e et e e s rete s s esane et e eheesanesibennbeennane cb(1)

program, generate for lexical analysis of text
program, get particular addresses associated with ..

. lex(1)
. end(3C)

Program, get SIZ€ Ofcecveiiriereerrerinierierireeeee e sereeneeaene ... size(1)
program, locate source, binary, and/or on-line manual page forcc.covvvevernicrcririenennienes whereis(1)
program, maintain, update, and reCOmPIlecccoieveeriiierieniineecceeeee et make(1)

program, overlay onto existing process and execute ... sh(1), exec(2)
program, run immune to hangups, logouts, and quits nohup(1)
program, set up signal handling forccceceviiiiiinininii signal(2), ssignal(3C)
PIOZram VELIICATION ooeeveiieieiiiiiies et ieeeetetesi et e e et e e eteeaeesbasesessaesaesssassenssansesesensassassenssnsees assert(3X)
provide semaphores and record locking on filescccccvvinieniniinnas lockf(2)
provide truth value about your processor t¥Peccceceireriiinenieirereieiieseeees e machid(1)

Permuted Index

DS ettt ... ps(1)
pseudo-random number generator . .. drand48(3C)
PSCUdO-random NUIMDEISeeeiierreeeriiriiereieritee et e et e eeteesmaeebbeebbeeeseesateesaeesaeeseassneenns drand48(3C)
PSeudo-terminal ATIVETcc.cooiiiiiiiiiiiiiieee ettt ettt ettt e e e s ibe s er e e esae et ena e e bt nraaee pty(4)
ptrace)
DEY ceveereseeete et et et et e te et ettt e he et e et e e b e seeb s e ne et e Rt aaseere e st a et s entenheen s e R e enaeeRe et e st enbenteen s et e e anereeabaentaaean)
public UNIX-t0-UNIX file COPY .erveeeiriirreiirieeieienieceeteiteeieenre et sttt e sae e s saeeee s sase s tsassanesaeeae e nenas uuto(1)
push character back into input stream ungetc(3S)
PUEC ettt bbb r b et r bt as putc(3S)
PULCRAT 1ttt bbb pute(3S)
putenv putenv(3C)
putpwent . putpwent(3C)
PULS ettt eteteteet e ettt e ee et s b e e e et et e e eabebeese st es e e s e et e st et e et et et e e Rt ebe st e s eneeseete et ens e beateaseaeebestesen b ebenbe et etenes puts(3S)
putw putc(3S)
PWEK ittt .. pwck(1M)
PWA ettt ettt s et b et b e e bt ek et h ettt b et bt e enetens pwd(1)
PWALD Lt bbbttt bbbt ettt a bbb passwd(5)

Pythagorean theorem function
gsort

hypot(3M)
.. gsort(3C)

query query(1)
quit character, deSCIiDtiON Of ..cc...cuiiiiiiiieiieiiiretteterte ettt ettt e et esbe et e ebeesaessesbeese st essasseenbesseennns tty(4)
quits, run command immune to . nohup(1)
quoting, as used by the shell ..o sh(1)
Fand .ooeeeeceeinen e ... rand(3C)
random number generator drand48(3C)
random NUMDEr GENEratorcccceecerieruieeieieierreesresseesessseaenns . rand(3C)
randomized library/archive, table of contents format description .. ranlib(5)
ranlib.h, deSCriPtion Ofccecciioiiiiiiiiii ettt sttt sttt ranlib(5)
raw interface to disc, deSCrIPEION OFf ..c.cooireieriiririieiietieeet ettt ettt estees et e

raw mode, description of raw mode interface to magnetic tape .

raw mode, description of raw output t0 Printercoiciiiiiiiiiiiiiiii e
OO OO bre(1M)
TEAA w.ovviieeieiiieie et sh(1), read(2)
read and format data from buffered open file ..o, scanf(3S)
read and format data from standard INPUbcccoceeeeiniiiiiiinin e scanf(3S)
read and format data from string scanf(3S)
read character from buffered open file ... gete(3S)
read error indicator on open file ferror(3S)

read from a file using buffers .. . fread(3S)

read from file read(2)
read from Standard IMPUEc.ooeoieieiieii ettt e sh(1)
read operation, repoSItION MEXE ..oc..iiiviiriiiiiieeieieree ettt s fseek(3S)
read password from /dev/tty or standard INPUbccoeceeiviniiiieiiniien e getpass(3C)
read text in convenient chunks on soft-copy terminal ... more(1)
read word from buffered open fillec.occceiiiiireiiiiiiie e getc(3S)
read-ahead, set number of buffers allocated t0cocoeiviiiviiiiiiiii uconfig(1M)
TEAAONLY ©.vivritiiiietiit et e sh(1)
read/write file pointer, move (seek) . Iseek(2)
real group ID, get fOr PrOCESSccveiriiririiiietiieie ettt ettt ee bbb bttt enesaeas getuid(2)
real user ID, get for process . . getuid(2)
realloc malloc(3C)
real-time priority, change Or TEAAccccccieiiererieier ettt et rtprio(2)
real-time priority, execute Process Withcccccoiiiiiiieriiiiiceiee e rtprio(1)
TEDIOCK £APE fI1E ...uiiiiiiiiiic ettt e dd(1)

-929-

Permuted Index

reboot reboot(1M)
TEDOO cvovivititceiii e s reboot(2)
re-boot operating system after shut-down . stopsys(1M)
TEDOOt SYSEIIL 1..uiiviiiiiiiiiiiie e e reboot(1M)
1eb00t the SYSLEIN ..ovvviiiiiiiiiiiiic s reboot(2)
record locking and semaphores on files lockf(2)
record login names, login times, and tty names for USerccccociiniiiiiiiinnnn utmp(5)
regexp.h, deSCriDtiOn Ofc.coviiiiiiiiiiiie et e regexp(7)
regular expression compile and match routines regexp(7)
relational database OPEratorccoveieiiiiieiiiiiiie e ... join(1)
release blocked signals and wait for Interrupt ..o sigpause(2)
release Command Set 80 cartridge tapeccccuiiiuiveiiiiiiiii i teio(1)
release number, get current revision(1), uname(1), uname(2)
relocation bits, remove from object filecoecceiiiiiiiiii strip(1)
remind you when you have t0 18avecccovvieiiiniciiiiiniccieescee . leave(1)
remind you when you have t0 1eavecccooiiiiiiiiiiiiiiiiiiiiiii e leave(1)
TEIMUNAET SEIVICE ..euviviiiiiitiiiieie ittt s a st b s ea s b s calendar(1)
remote system, execute WOrk requests Occcocoeoiiiiiiiiiiiiiiniicc e uucico(1M), uux(1)
TEMOVE & AITECEOTY fIE .euvvirieuereieieieeieee ettt ettt sttt ere st et be st bbbt ne e ir(

remove a LIF file (

remove backing store devices (2)
remove BIF files OF dir€CtOries ...ccioviieueiiiriiiiniiieneeicte ettt et e bifrm(1)
remove delta from SCCS file rmdel(1)
remove duplicate lines in filec.cc.c..... .. unig(1)
remove extra new-line characters from file rmnl(1)
remove files or dIr€CtOTIES ..ovviiviiiiiiiiiiiiiiiic e e rm(1)
remove link to file link(1M), unlink(2)
TEINOVE MESSAZE QUETLEeeeeeieeeeeeeaaniieeteeeeesaaansietetaeesaaasaesesteeeeaeeeaatiaaetateeeea sentanteeeeennmemeneneeeeeseaannns iperm(1)
remove multiple line-feeds from OUEPUL .e..ecvrveeeeiiiiiiiiiieiecce et ssp(1)
remove nroff/troff, tbl, and eqn constructsccoveiiiiiiniiiin deroff(1)
remove selected fields from each line of a file . . cut(1)
remove selected table column entries from file ... cut(l)
TEIMOVE SEMAPHOTE SEL ..eeutiureuiteetiiitirteeteetetet ettt e et st et e b s et ee b ebe st ea s et et s e st raes e esebe st sb et estesesbemtennes iperm(1)
remove shared memory id iperm(1)
remove symbol table and relocation bits from object filecccoceeiiiiiiiniiiiiniii strip(1)
TeNAME LIF fIIES tocveiriiriieiiiiieiteiiet ettt ettt eae et bbbt s ae sttt ee e s b nen e neens s lifrename(1)
repair file system inconsistencies fsck(1M), fsdb(1M)
report inter-process communication facilities status ipes(1)
report number of free disc blockscccccoernnnnn .. bifdf(1)
TEPOTt CPU HIME USEA ..veeuveireriiiiieieitieieteett ettt st sttt ee st aesae et e sae s n b ebe et snn e besaeeaesnesree clock(3C)
reserve & LeITINAlccooiiiiiiiiiiiiiiiie e e lock(1)
reset error indicator on open file .. ferror(3S)
RETURN .ottt s ea s en s regexp(7)
TEVEK ottt ettt et h et bttt s b bttt b et a e e bbb e e bttt b ettt eaeeb e b enes revek(1M)
reverse line-feeds and backspaces, interpret for nroff(1) . col(1)
reverse previous get(1) of SCCS file ..o unget(1)
TEVISION 1ouverueeniiiniretiesteete sttt ettt eb e e st et et ettt et s e e bt eab e b e b e ae s e bseheeab et s sa s e b e s ennesreens revision(1)
revision information, get HP-UX revision(1)
revision numbers, check for HP-UX files . . revck(1M)
TeWINd .eviviiiiiiciiiccec e .. fseek(3S)
TeWINd @ fIle .oouiiiiiiiiiii e e fseek(3S)
rewind group file getgrent(3C)
TeWInd MAGNEEIC BADPE ..euerviieiietiitiieiet ettt ettt ettt e st eae bt e st ettt s et et et eb e e b st et st b saee bt resane e mt(1)
rewind PasSWOrd fllecccciiiiiiriiiiiici e s getpwent(3C)
TIL oottt SRR h SRR b b s e Rt h st rm(1)

/N

=

Permuted Index

... mail(1)
rmdel(1)
... 1m(1)
rmdir(2)
rmnl(1)
roman8(7)
root directory, change for duration of commandcccoceiirnennniiiiiiniiciene chroot(1), chroot(2)
root volume, mark/unmark volume as HP-UX root volumecccoevvueirimiiicecnininninneninns rootmark(1M)
rootmark rootmark(1M)
TEDTIO 1ottt ettt sttt et e e te e s b e e eae e bt e e s aae e hbeebae et e s n e naseannneesebaenaeennens rtprio(1)
run a command at IoW PriOTitYcccooiiiiiiieiniie e nice(1), nice(2)
run a command immune to hangups, logouts, and QUItScececerverieririenieiiiieeienr e nohup(1)
run daily accountingcccoceveevirineennn. . runacct(1M)
runacet ..oooeeennneee. runacct(1M)
CPU N TEPOTE .eevriviruininiuieteerienteteieetetestetesese et s estst et sesesaetebese s besesesbesasebeseassaeseeseneesesesesansensssenee clock(3C)
CS/80 cartridge tape special file ct(4)
GPIO routines (device I/0 library) . gpio_*(3I)
HALGOL PIOGTAIIS ..cuvetiiueiersenienteteseesteestestessestessesestesesseseesassessesesensensessesessensesssesessasessessessesen opx25(1M)
HP-IB routines (device I/O HDIArY) ...cccocovirereeinneinisieteset et eressese e esee s seaesesesesesaensenan hpib__*(3I)
IMAGE database access
1/0 routines (device I/O LDIATY) .ciovevcrieiireiniieeeieieie ettt eneneeesaenessenennen io__*(3I)
KERMIT-protocol file transfer Programcc.ceeceeriiieierniiniieeiieectieseecseeeeeeesieee e essesseesnaeaenes kermit(1M)
LP Spooler SyStem, CONMIZUIEccvveriieriieeriieeteeriieniieseeeteestteteesaeeebaeeseesseesaaesnseesssesnsessaeansnen mklp(1M)

. catread(3C)

MPE/RTE-style message catalog support .
. catread(3C)

MPE/RTE-style message catalog support

UUCP system snapshotccccccoevueeeiinane uusnap(1)
XMODEM protocol file transfer program umodem(1M)
XMODEM protocol file transfer program umodem(1M)
SACE vttt e et a b e et e e bt ae bt a et eres sact(1)
SDIK 1ot et b b sttt n et es brk(2)
scan text for pattern and process ... awk(1)
SCANE Lottt ekttt st scanf(3S)
SCCS, ask for help CONCEININGccciiiiiiieiiiiiiiiciicc e help(1)
SCCS file, change delta commentary of . ede(1)

SCCS file, check for VALIAIEYoeoveiiviiiiiiirci et e .. val(1)
SCCS file, compare tWo VErSIONS 0Ofcociiiieiieiiiiiiieiiiiieicini et e scesdiff(1)
SCCS file, create delta (Change) fOrcoveciiieerieriiieerie ettt s delta(1)
SCCS file, description of SCCS file format scesfile(5)
SCCS file, get identification information from .. what(1)
SCCS file, get version ofc.ceeveeeevveeeveenn. . get(1)
SCCS file, print and summarize prs(1)
SCCS file, print current editing activity for sact(1)
SCCS file, print delta SUMIMATY OFfceiiieriierieiiieiertiitiie ettt eetteseeae s e esbe e s e sseeeseeseessesenseessessesnsessannn get(1)
SCCS file, remove delta fTOmMccccvovvuiuiiiiiiiiieiic e rmdel(1)
SCCS file, reverse previous get(1) of ... unget(1)
SCCS files, create or change parameters 0fc...ccoceoiviieircniinieenieece e admin(1)
SCESAIE 1vvieiiiec e s scesdiff(1)

schedule commands at specified date(s) and time(s) at(1), cron(1M)
screen handling and optimization TOULINESccceeiviciecieriiieiiiieeeeieee et ee et aae e s eseeseaeveesae e curses(3X)
SDF boot area, copy OS from one or more SDF boot areas to another .. oscp(1M)

SDF, description of .. dir(5)
SDF, description of SDE VOIUITE ...cccceiiiririiiiieiiiieiiietceteecee ettt bttt se e sben e e saennenee fs(5)
SDF volume, format, initialize, and certify sdfinit(1M)
SAMNIE 1evviteeiict e sdfinit(1M)

search an ASCII file for PAttern ..ot grep(1)

Permuted Index

search tables, hash-codedcccoiviiiiiiniiiii s hsearch(3C)
security control, dialup . dialups(5)
SEA vttt et a et a e h e bbbt et b R e b e bt et aeeae et n sed(1)
seek t0 new POSItion iN fIlecccooiiiiiieiiiiiiiiiiic e Iseek(2)
segment length, modifycccocveruevenncene memvary(2)
segment, lock/unlock for process ... memlck(2)
segment reference patterns, inform operating system aboutcceeveivieeeeeiiiiinininiiinneenn, memadvise(2)
SELECT 1ovinrireeti ittt bbb select(2)
select/reject common lines of two files ... comm(1)
semaphore CONtrol OPEIAtIONSccciriiiviiriiniiereenienieiiit e se ettt sbe e s seae e s sbsessessaeaeneee semctl(2)
SEmMAapPhore OPETAtiONSccovuiiiiiiiiiiiiiiici et semop(2)
semaphores and record locking on filesc..ccoveeeriiiiiiiiiiiininici s lockf(2)

semaphores, getccocevvviviviniciiinens semget(2)
semetl semctl(2)
semget ... semget(2)
SEIMOP ovvverrrenieriniireninnes .. semop(2)
send mail to users or read MAIlcccoiiiiiiiiiiiii s mail(1)
send Signal t0 All USET PIOCESSESceceeriiriirreererienrirteeereetirieetesteasesseestessessesseetesessaassessesnessaenne killall(1M)
SE cuteteetetet ettt R s e R b a s a s e s R s sh(1)
set current signal mask . . sigsetmask(2)
SEE GTOUD ACCESS LIST wevuvetiriiirieriieiertenterict et ere st st e it et e s e e s e e seeaeersessessessbenaessessnensneseens setgroups(2)
set NAMe Of NOSE CPU eeeviiiiiiiiiiiiicieicie ettt st sethostname(2)
set 0ptions fOr terMINAl POTE ...cceccierieeieeieiierieeteeertee e erte e te s et e s aeeteeseese e besesseetanseeraaseesseessnensean stty(1)

set or change real-time priority rtprio(1)
set or print name of current host system . hostname(1)
SEE PIINEET OPLIOIIS ..eoviiriieiiiiirteiiicee st e et et st e it et eraee e e st e et e s basssesaeesaemsebeeneetenseebaeseesbteseaensenssansees slp(1)

set process’s alarm ClOCKoiieuiiiiiiieriiii e alarm(2)
set special attributes for group .. setprivgrp(1M)
SEb SYSUEIN DPATAINEEEIS .eevvirveerrertieierieiiseesteatieseeseesesssesseessesseesessaesssssessesseesesssenseseensesssessanses uconfig(1M)
set tabs on a terminal tabs(1)
set the modes of @ termiInalccccciiiiiiiiiiniiiie ettt getty(1M)
Set time and dALEcoiviiiieiiiiirc ettt date(1), stime(2)
set uSer and ZrOUD IDSceiiviiiiiiiiiieiciiieeei ettt setuid(2)
setbuf setbuf(3S)
setgid setuid(2)
SEEGTEIE +.ueeuriuiirtertitietetetete b e e st et et et e tas e e st eteeae st esseaeessesseaaeseebesseneeseeseeseeteseenaese e eseeaansereesneanne getgrent(3C)
set-group-ID bit, set/clear for file . chmod(1), chmod(2)
SEEETOUDS ++eeeveerueruerurerseensassesstesesseseessessessaassesseessensesssesssessassesssessssssesssessesssesssssessessessasssesssnnses setgroups(2)
sethostname sethostname(2)
setitimer setitimer(2)
setjmp ... setjmp(3C)
setkey crypt(3C)
SEEINIIE ©evviviiiiieic e s a et a ettt setmnt(1M)
SEEDBTP +euvteueetertiesenteteuteteete st e st et b ete st et be st et e st et s e reebe et e benbe st et eseereeases s st sa e e et ebe b entehe b et et es e eaasentas setpgrp(2)
setprivgrp .. setprivgrp(1M)
SEEDPIIVETD +evvirieenuieienteerieiestertesteseestestessaestessesseesseessasssessenssessessaassensessaessess setprivgrp(1M), setprivgrp(2)
SEEDWEILE c.vveutiateuietestet ettt et e e ete et e e be st e st e b eebesse st e e eseebeeaeese et e aeseesees e s e eses b e e se s e st esansest e e esenrenn getpwent(3C)
settimeofday . settimeofday(2)
SEEUIA 1ttt ettt ettt eae ettt st es bbbt e b et ea et e st saennens setuid(2)
set-user-ID bit, set/clear for file . chmod(1), chmod(2)
BhL bbbttt b et n s sh(1)
shareable, mark or unmark program code as chatr(1)
shared memory control operations shmetl(2)
shared MEemMOTY OPEIALIONS ...vveveerirtertieiiriereeiiesteetesteeseaesteseseesessesseeseessesasesssesserseessensessesssens shmop(2)
shared memory SegMENt, etccveiiiriiiiiiiiiiiiii i shmget(2)

Permuted Index

shell ccevvnevineecnceeees sh(1)
shell, change default login chsh(1)
shell command, issue from program system(3S)
shell, command, Personal Applications Manager pam(1)
shell, INPut COMMANAS £0 ...veuiiieiiiiiiiicreece ettt ettt et be e sh(1)
shell procedures for aCCOUNTING ...cevcviiiiiriiiierteeii ettt ete e see et ae e aesmae e esaaesbeens acctsh(1M)
shell programming langUAZEccc.eieriieiierreriiierierit ettt st et ettt st sea e st aeees b et esaeeaean sh(1)
shell scripts, system initialization . bre(1M)
Shell, Set/ClEAr flAES £0 .veevevevererereuiietiesiirt ettt eteae ettt s st eb e bt b ebe st bt asas b s s s st s aebeneneaes sh(1)
SRTE rerreee v ssssesesssssssss e sssesss e ee s neeees s sh(1)
shmetl .. shmetl(2)
shmget shmget(2)
shmop ...cocevveeeene ... shmop(2)
show group memberships groups(1)
shut down operating system with optional re-boot stopsys(1M)
ShUtdOwn ..ocveiveieiii e shutdown(1M)
shutdown status of specified file SYSEEIM ..cc.covvvereiiiireeeiticieecrere e e et e e fsclean(1M)
SIEDIOCK ettt ettt st sttt a bt st et beeaeens sigblock(2)
sign on login(1)
signal signal(2)
signal facilities, SOTEWATE ..c..covieieiiiiiireeie ettt ettt et et et e e e sea b saemsesaeeneeens sigvector(2)
signal, force action associated with signal t0 be taKeNcccevvieeveerciiesiieeriencreeere e eeaee e ssignal(3C)
signal handling for program, Set UPcccocervemveeiiiieeieeieeeceee e .. signal(2), ssignal(3C)
signal mask, set ettt sigsetmask(2)
signal, send SIGIOT £0 PrOCESSccccviiiriiruiriiiiiiiiiiinc e abort(3C)
signal, send t0 all USET PIrOCESSEScocceuiruieuieuiiiriiniereiniet ettt ettt sae s tes e saneneene killall(1M)
signal, send to process kill(1), kill(2), abort(3C)
SIGNAL, SEE ETAP FOI .viiiiiiiiitieie ittt ettt ebe et et e bt e ae st e st e be st e ba et e s ebesaeeseenn sh(1)
signal stack spacecccccvveceeeinnenne . sigspace(2)
signal, suspend process Until reCEIPL OFcvivirrieiiieseriiieccecreseeee e e e et sae e e e eaeseesaasseeeeesanens pause(2)
SIBIBAIIL L.ueiuveuiiiinieteiet ittt ettt b et et s bbb et e st et e b e st e b et e s e b e st b et emten e ek et e b e b e etnenhenbennen gamma(3M)
signs, make using large letterscocccovveerriinieeniiiiieece e e eerreee e e e et ettt e e nae et e e aaen banner(1)
sigpause sigpause(2)
SIZSEEIMASK weeiiiiiiiuiiiitieit ittt ettt st sb et e s e e e eaeeane sigsetmask(2)
SIZSPACE w.veeuriuiitiiieiit ettt et sttt bt ettt bt a et h et et s et b e e heaeeh et enn et s sigspace(2)
SIGVECtOr ..ovvvereeereenns sigvector(2)
SIMPLE teXE FOTTNABEET 1evvevieieeeeiiiieeei ittt ettt eat et e eae e seeaeerseeaeeseessereeesessensenssasssansns adjust(1)
SN ceviicceeie e trig(3M)
sine function .. trig(3M)

sine, hyperbolic . . sinh(3M)
sinh sinh(3M)
SIZE ettt et b e bbb e bbbt bt b e s bbb beebe et eheebe e size(1)

size of an object file ... size(1)
sleep ... sleep(1)
sleep sleep(3C)
3 o OO slp(1)
snapshot of the UUCP system uusnap(1)
software signal facilitIesccoiiiiiiiiiiiiiiic e sigvector(2)
SOTE +oveuteuite ettt ettt h et b et e bt a e et bbb st bt bRt e b ehe et ekt e s et eae et htree et st n e e be st s sort(1)
sort algorithm gsort(3C)
SOTt ANd/OF METEE FIlES ...e.veirieiiieieieiriiiee ettt ettt sttt ettt ettt et stes bbb ses et naenenene sort(1)
sort, topologicalcccceevvveenns .. tsort(1)
source code, locate for program whereis(1)
spaces, convert to tabs, and vice Versaccoeueennes expand(1)
special characters in terminal interface, description Ofc..ccceeeiiiiiiininiciinee e tty(4)

-33-

Permuted Index

special file, create block/character/networkcocececererveercrerrercecennes mkdev(1M), mknod(2), mknod(1M)
special file, create fifo mknod(2), mknod(1M)
special file, identify for file name on mounted file SYStEMceceveiviieiiiiinieniierienee s devnm(1M)
special file, MOAEIN COMETOLcevuirririiiiiiiiiriirie et sttt e e et e eesre et e e satesaaessaessaeseesnenses modem(4)
special file, CS/80 cartridge tape . ct(4)
special file, system “bit bucket” ..o null(4)
special files, perform functions on ... loctl(2), stty(2)
special files, utilities used in creating special filesccccovivreriiiiieniniiiiierceececer e mknod(5)

spell ..o ettt ettt ... spell(1)
spellin spell(1)
spelling errors, find spell(1)
spellout . spell(1)
Split cveeveiiienene split(1)
split a file into pieces split(1)
split operating system into one or more ordinary filescoceceeveeireneriinienceiiiereeer e oscp(1M)
spool directory clean-up for uucp uuclean(1M)
SPIIIEE 1ottt et printf(3S)
SPULL 11ttt bbb e sputl(3X)
SATE revreerrerenenenen ... exp(3M)
square root function . exp(3M)
srandc..coceveee. ... rand(3C)
sscanf ... scanf(3S)
ssignal ssignal(3C)
SSD trrrenrentee ettt a b e bttt eh e bbb e R b e Rt eh e s s e ae bt e b et es e eaeeneenes ssp(1)
stack size, SPECIEY S12€ I DYLES ..ceeeririreriiiiese ettt en et uconfig(1M)
standard input, copy one line from to standard OUtPULccooeeveiuirieniiinieninicc e line(1)
standard input, read from sh(1)
standard inter-process communication PACKAZE «.......ceveerrirerererrverreriieieseesiesseeeesresseessesseessaessenees stdipe(3C)
start character, resume output, deseription ofcccoiiiiiririniriiiniin e tty(4)
stat stat(2)
stat(2)/fstat(2), description of structure returned by these €allsccoeeuvieeucreirieceecercccicireeennne stat(7)
state, defining system states for Init(1M)cc.coceoeiiereinineiccieererte et sre e saenee inittab(5)
state, initialization of system state and processesc..ccoeviivevininiiniiiniiiniiicce e nit(1M)
stat.h, description ofcceeiiininiiininiiiie ... stat(7)
status flags, get/set for file . fentl(2)
status, get for file stat(2)
status, inter-process communication facilitiesccccoccvueriirininieniiiineniice e ipes(1)
SEAIO wervenieneiiieireee e ... stdio(3S)
SEAIPC wevevinitiitii ettt et h et e h et be ek b e bt et ne et enenaens stdipce(3C)
SEED wevtitetieiiet ettt ettt h e bt h bttt et ee et et a et a e ea e et a e ehesaene s regexp(7)
sticky bit, set/clear for file chmod(1), chmod(2)
SEIIII vttt e st eaes stime(2)
stop character, suspend output, deSCription Ofcceceevierereisiererineeee e te et ae e e s sseens tty(4)
stop operating system with optional re-boot stopsys(1M)
SEODSYS wveeveeerrrerieeerrieeereenreeseeeereesnenneenaees . stopsys(1M)
streat .oooiieeiinn ... string(3C)
strchr . string(3C)
stremp .. string(3C)
strepy string(3C)
SETCSDIL vttt e string(3C)
stream, close or fIUSHccviiiiiiii e fclose(3S)
Stream teXt eAIbOToiiiiiiiiiiiiii ettt st sed(1)
string collation, non-ASCII, used by NLScccccoveiiimrcniiieieeieineie et eeseeseeseeesenen nl_string(3C)
SELIIZ, COPY -vevvevremteuitietetettste et ettt et et st e b e s et eat et e b eaessebestessestesessessaseesesa s essessesanseesensassansasens string(3C)
String, get 1ength Ofocoiiiiiiiee ettt ettt aesenenee string(3C)

N

Permuted Index

string, print formatted data INEOccceeveiriiiiiiiierr e e printf(38)
string, read and format data fTOMcoceeieiiiiriiiiiiee e scanf(3S)
string, read from buffered open file . gets(3S)
string, search contents of file for specifiedcccccoiviiiiiiiiii grep(1)
string, search for particular character inccoeviiiiiiiiiiiii string(3C)
string to double-precision integer conversion .. . strtod(3C)

string, write to open file or standard OULPULcccoviiiiiiiiiiiiiiiiiicc e puts(3S)
SEIINGS, COMPATE EWO ..eiviviiiiiiiiiiiiii ittt sre e e neesaesaeraasssaaeeens string(3C)
strings, concatenate two string(3C)
string-to-integer conversion strtol(3C)

SEIID woveeeeeieeenen e strip(1)
strip multiple line-feeds from outputcecceerevvenninenenienne ... ssp(1)
strlen string(3C)
strncat ... string(3C)
1050703 141 o TP O OSSO TP string(3C)
510 8 41430 2O PSSP PP TRRPPPPP string(3C)
strpbrk .. string(3C)
SEITCRT ot e string(3C)
SEISPIL utetiiiiiiititeettete st e et et e st e e bt s aa s s bt et e b e et e st e s b et e ea b e s be b e st et e s Rabeea b e eRe e et e bt eatesae b st eeeenten string(3C)
strtod . strtod(3C)
strtok string(3C)
strtol . strtol(3C)
structure, definition of structure returned by stat(2) and fstat(2) ... stat(7)
Structured Directory Format, description of dir(5)

Structured Directory Format, description of SDF VOIUIIE ...ccccoovevuerceerieniiriiienieienreeeeeeseeseesaesieeneeens fs(5)
Structured Directory Format volume, format, initialize, and certifycccoccevevvienievinvueneennns sdfinit(1M)
Sl ettt h e bbbttt b e b st et b et en e e b ebe et ens stty(1)
stty . .. stty(2)
SEEYVO oottt ettt ea e et et eer et ean e e ne e eteesereeernee sttyv6(4)
SU 1etteutetiett sttt st e a et a et a e ea e bt e R R bt b b et E bt b a s eh e bRt E b e bt h bRt Rt e h et s b e e et e nnene s su(1)
summarize and print SCCS file prs(1)
superblock, description of superblock in SDIF VOIUINEc..coueueriiuiiiieiiiiiieniineiceeieieetereete e fs(5)
suspend process execution for interval of time sleep(1), sleep(3C)
suspend process UNtil SIGNAL ..c...iiriiiiiiiiie et e et e et seae e re e nes pause(2)
swab .., .. swab(3C)
swap bytes swab(3C)

swapon(2)
. uconfig(1M)

swap device, add
swap time, set for virtual segment

EATEY o103 KON swapon(1M)
SWADOIL ..vveuietiseesestisteseet et eae et e b ese e e st ea e ae st st e et e b eae et e e ehe ettt e a e s e bRt be et R s s en et b s aeas et ens swapon(2)
swapping and paging enablec.ccoiieciiieniiiee e ettt e swapon(1M)
symbol table, extract entries from executable file’s symbol table (name list) ... nlist(3C)
symbol table, print from 0DJECt fIle ..cc.eviirieriiiiiiiere e st nm(1)
symbol table, remove from 0bJECt fIlecciveeiririieiiiiieiere et strip(1)
symbols, examine execution Profile fOrocceirireiiiniriiie e prof(1)
SYIIC tevveureiiruenieirenteeerienee et ee e sne e sync(2), sync(1), syncer(1)
L T OO syncer(1M)
sync, automatic periodic syncer(1M)
synchronous I/O multiplexing select(2)
sys—errlist ..oocoiivciiiiininiee ... perror(3C)
SYS_TIEIT veuverivitereieteseste sttt et ae e bt et b s st bbbt e s e bRt b e h e e st a b h st ae s perror(3C)
SYSTEIIL oeutiitiiteitiiitentest ettt ettt ettt e eae e s b e e be s b e st e e et e ettt e ae et e ea s e b et e eae e ae s b et e eateshenaeeaeenaeeas system(3S)
system activity, terminate all current activity . shutdown(1M)
system calls, error INAICAtOT fOrceiiriiriiiieieiit ettt et s errno(2)
SYSEEIM CONFAZUIAION ..eueiiiiiiieeiiieiieeiiercee e ettt e et e eeeae et e e b eesaeestasessesseeesseenseaaseenssesnneenen config(1M)

-35-

Permuted Index

system error 10gging fllecoooiviiiiiiiiiii et errfile(5)
System III compatibility for magnetic tape, description of mt(4)
system initialization shell SCIIPtSc.cooiviiiiiiiiiiiie e bre(1M)
system name, get revision(1), uname(1), uname(2)
system names, list of those known to TUCD wevvreueeeerveeeeeesueesseenstensseassansseessaasssseessseensnnesseensssesssennnses uuep(1)
system parameters, set or list uconfig(1M)
system reboot reboot (1M)
system reconfiguration uconfig(1M)
system state, defining states for init(1M) . .. inittab(5)
system state, initialization of init(1M)
table of contents format description for archlves/hbrarles ranlib(5)
table of devices mounted by mount(1M) mnttab(5)
table of mounted devices, create setmnt(1M)
table search, DINATY ...t . bsearch(3C)
tables, format for Nroff/tToffcooiiiiiieie e et tbl(1)
tabs tabs(1)
tabs, expand t0 SPAces, ANd VICE VEISA ..c.ivveeriirierreriiriireiereeeeeeeteseesstsseestesaseseeseeesaansessessessaenses expand(1)
tabs, put tab specifications In teXt fIlESccovirviriiiiiiriiiiiee ettt fspec(5)
tabs, set on terminal ...)
tail)
tan ..)

tangent function trig(3M)

tangent, hyperbolic sinh(3M)
tanh sinh(3M)
tape, archive files on ... tar(l)
tape, Command Set 80 cartridge utility ... teio(1)

tape density, how to set for magnetic tapeccccoeeveerinn .. mt(4)
tape, description of magnetic tape raw interface and controls
tape file archiver
tape file, convert, reblock, translate and/or copy .
tape initialization
tape, manipulate and/or position
tape, unpack/extract files from Command Set 80 cartridge ...
tar ..

... deroff(1)

tcio teio(1)
tee . tee(1)
temporary file, create and open tmpfile(3S)
temporary file, generate name for tmpnam(3S)
termcap termcap(3C), terminfo(5)
termcap description to terminfo description, CONVErtcoooceviveviiiiniiiinniincniceeneneeee captoinfo(1M)
terminal capabilities, database for v7 €dItOrccoiviiieiiniiiii e terminfo(5)
terminal capabilities in terminfo(5), access termcap(3C)
terminal commands, description of ioctl(2) system call commands tty(4)
terminal, database listing terminal type for each port ttytype(5)
terminal dependent initializationcccocereueeee ... tset(1)
terminal, description of general interface to . tty(4)
terminal driver, pseudo-c.cccvverrrerrenne. ... pty(4)
terminal emulation, asynchronous aterm(1)
terminal, establish communication with terminal for login getty(1M)
terminal, facilitate viewing of cOntinUOUS tEXE O v.vevereverieverrierierieirrieteseeie et st eeressaeaneesneereenes more(1)
terminal, find baud rate of terminal during login process getty(1M)
terminal flags, mapping between pwb/V6 UNIX and current HP-UXcccccvvirininiennniciincniiiinnens tty(4)
terminal, generate file name for . ctermid(3S)

Permuted Index

terminal, get path name ofc.ccociiiiiiiiiiiiin ttyname(3C)
terminal, get path name of user’s)
terminal input control, description Ofccocoevviiiiiiiiiii tty(4)

terminal interface, general termio(4)

terminal interface, version 6/PWD-compatibility . sttyv6(4)
terminal, permit/deny MESSAZES £Occvirereiriiiirieiiiiiiieiiec e mesg(1)
terminal SCreen, ClEATciviviviiiiiieniiiiiiici e clear(1)
terminal screen handling and optimization routines curses(3X)

terminal, set options for stty(1)

terminal, set tabs on tabs(1)
terminal, set type and mode on login tset(1)
terminal, test file descriptor for association with ttyname(3C)
terminals, list of recognized terminal names term(7)
terminals, list of supported terminals in terminfo(5)cccoeviviievirieiininciiiii term(7)
terminate a ProCesscooeverierecirininiereieieneneninns kill(1), sh(1), exit(2), kill(2), abort(3C)
terminate all users’ processes shutdown(1M)
£rmINfO COMPILEL ..eviviiviiieieirictit ettt b bbb ca bbb tic(1M)
terminfo database access tput(1)
terminfo description from termcap description, convert ... captoinfo(1M)
BEITILIO wevteutetenteieentet ettt ettt sttt b et et st b e st sa et b b sae bbb e b bbbt e b s b et aeb s b b a s re s termio(4)
test sh(1), test(1)

test conditional expressions . sh(1), test(1)

EEXE @AIEOT 1ovvtieiiiiiiccc e e ed(1), ex(1)
text editor, database of terminal capabilities for vic.ccooeviiniiiiiiii terminfo(5)
text editor, stream sed(1)
text editor (variant of ex for casual USEIS)ccoeveriiiininiiiiniiiiiiiiccnccne s edit(1)
EEXE @ATEOT, VISUAL .eeveeuiteteiieiiseetet ettt ettt ettt eae ettt e b e bbb et e s e snnen vi(1)
text, facilitate CRT viewing of continuous more(1)
text file, put format specifications in fspec(5)
text, find Spelling errors N ...cccciiieiiiiiiiiiii e spell(1)
text format specifications, put in text file . fspec(5)
text formatter ... nroff(1)
text formatter, simpleccccoeveveneininiennns . adjust(1)
text formatting, description of man macros .. . man(7)
text formatting, description of mm macros mm(7)
text formatting, remove nroff/troff/tbl/eqn constructs from text deroff(1)
text, generate programs for lexical analysis ofcccccevervininiens e lex(1)
text pattern scanning and processing language .. awk(1)
text, print USING MIN IMACTOS ...coeeeiriiiieriitiirteeitie sttt se ettt et st e s b e ss e s sbesrbeesairae s snas s e atesnnesens mm(1)
tgetent termcap(3C)
tgetflag termcap(3C)
tgetnum termcap(3C)
tgetstr termcap(3C)
tgoto termcap(3C)
three-way differential file cOmMPATISONccccvviviviiiiiiiiiiiiiii diff3(1)

... time(1)
time and date, convert to ASCII string .. ctime(3C)
time and date, get more precisely ftime(2)
time, corrected for daylight saving time and time zoneccccoevvviiviiiiiniiininiiiie, ctime(3C)
time execution of a process and its child processes times(2)
time, get seconds since 00:00:00 GMT, January 1, 1970ccccceveriinininiiiiinniiiiiiiiniere s time(2)
BIINE, GEE/SEE cenereuiiiiciicteii e b gettimeofday(2)

-37-

Permuted Index

time, print elapsed user and system time fOr ProCeSSccocecceriirreriiieriersierieneereeeenieseeeeseeenennees sh(1)
time, set and/or print . . date(1), stime(2)

time to leaveccoveeennne leave(1)
time zone, time corrected fOTcoevirririeriiiiereeiiiriee ettt .. ctime(3C)
time/date stamps, correct those on WHMP TECOTAS w.vvivevrerurrrirreeereerrereeeieieeerineeserereseereesenesseees fwtmp(1M)
BIITIES covivieiriiicicci e sh(1), times(2)
BIITBZOMIE ..ttt ettt bbbt b e s bt e ebere s ctime(3C)
BIPALE cocvieieiiiiicitc bbb sttt enee tmpfile(3S)
tmpnam tmpnam(3S)
BOBSCIL 1uveerevintititetet ettt bttt bbb b a et e saer s conv(3C)
CBOLOWET ettt ettt ene b a e conv(3C)
tolower conv(3C)
topological sort tsort(1)
touch touch(1)
_toupper .. conv(3C)
toupper conv(3C)
BDUD ettt ittt ettt ettt a e b et e h bt et b bbb an e st e s bt e Rt R e bbb e et b e s et aeaeens tput(1)
BDULS ettt sttt et ettt ettt e s et e a e st e ebe et s e be e et et sapanseesbees termcap(3C)
DL ettt bbb R bt eae bbb ettt e et be et tr(1)
transfer files between two systems . uucp(1), uuto(1)
translate assembly 1aNGUAGEccccivuiiiiiiiiiiiiiicice s atrans(1)
translate characters during copy from standard input to standard outputcoceeeveriiieiiininieiiniinnnns tr(1)
translate characters for NLScccoociivveiineniniinencene e . nl_conv(3C)

translate taAPE fIlEooieeiiiiee e bbbt dd(1)
BTAD vtttk b e et eh et b e b sh(1)
trap numbers for hardwarec.c.cocvviiiiiiiii e trapno(2)
trap, set for particular signal sh(1), signal(2), ssignal(3C)
ELADIIO 1ottt trapno(2)
trapno, report value for last command failureccooceererierieeiiiiiieesceeiesee e ete e eee e e e sbeseeeseeens err(1)
trigonometric functions .. . trig(3M)
troff, format tables TOTooiviiiiiiiiiie et tbl(1)
troff, nroff, tbl, eqn constructs, remove from teXtccoeririiirirreneeiienrceneee e deroff(1)
BITIE ooivitieiii ettt et bbb bR et b s true(1)
truth value about your processor type . machid(1)
ETUED VAIUES ©oovviiiiiciiiic e true(1)
ESEE vttt bbb b h sttt h bt s b et e h e b et eh e b n et sa b st ebeanennen tset(1)
tsort .. tsort(1)

tty ... tty(1)

tty name, record for each user (accounting)cccooeu.. .. utmp(5)
tty port, database listing terminal type connected to each .. ttytype(5)
ttyname . ttyname(3C)
ttyslot ...c........ ... ttyslot(3C)
tune a file system tunefs(1M)
type declarations, data type definitions for system €odecoovererriercrsirienrieneeneneenreneene e types(7)
typedefs for code portability between HP-UX implementations . . model(5)
types.h, deSCrIPEION Ofcoouiiiiiiiiiiit ettt ettt e ere e et et reenee e types(7)
BZINAINE 1iviitieitititctit bbbt ne ctime(3C)
BZSEE oveevirititei ettt et b bt bk e b s b ke h ekttt h e b st bk s st st b e en e ne ctime(3C)
UCONEIE 1eviviiitiiiet e uconfig(1M)
OO ul(1)
WIITE oottt b bt bttt e ulimit(2)
umask ... sh(1), umask(1), umask(2)
UIMOAEI covititiiiaiit ittt a e b bbb b umodem(1M)
umount . mount(1M), umount(2)
UDAIIIE eoevieiiivittin ettt es et re st en st st e et et eees s e b sttt e e bt tae e sa s ee e s s emens b eaeesestenens et uname(1), uname(2)

- 38 -

TN

Permuted Index

. disc(4)

unblocked disc interface, description of . .
compact (1)

UNCOMPACE wevvviriiriiiiiiiiienes

uncompiler: terminfo untic(1M)
underlining, translate underscores to terminal €scape SEQUENCEcceeverviiireniiriniinernieiee e ul(1)
underscores, translate to terminal escape sequence for underlining ul(1)
UNEXPANA 1viiiitiiiiiiiicieti e bbbt st sbe bt s sn et expand(1)
UDECE 1ottt bbbt st n e en bbbt nenas unget(1)
UNGETC . . regexp(7)
ungetc ungete(3S)
uniformly-distributed pseudo-random number generator . drand48(3C)
UIHQ creriiieni et bbbt e een uniq(1)
unique lines, find after comparing two filesccccoevenenens comm(1)
UNIX/HP-UX system, establish communication with anotherc..coceerrrnnererencenereeeereieennenen cu(l)
UIIIK covvvvvvocmaesesesssssssssssseses s sssssssssssss e ees s ssese s seeeesessesssesssernnns link(1M), unlink(2)
unlock/lock process address space or segment memlck(2)
unmount or mount file system mount(1M), mount(2), umount(2)
unpack cpio archives from HP mediacccocoiiiiiiiiiiiiiiii s upm(1)
unprintable characters in a file visible or InVISIblec.ccoveviriiiiniiiiiincicce e vis(1)
UNEIC vt untic(1M)
update access/modification/change times of fileccecevieveriieeiirnerrece e touch(1), utime(2)
update, maintain, recOmMpPile PrOBIAIMSccccivieereeriirieieieriieente st srreeetesrre e eesebesere s aessneeeeseeeessneanns make(1)
update super-blockccccerieeienienns . sync(2), sync(1)
UPIIL cottiiieiittete st et e ebt et et b esbesueeseesbeeaeesnesbeemteesbesaae st b b aesseensesabenban b e et e benbesaeente s ente e bentebtasenbennaenben upm(1)
upper-case to lower-case character conversion conv(3C)
use findstring output to insert calls to getmsg .. . insertmsg(1)
user crontab file ... crontab(1)
user environment, description ofccoceeniiinn environ(7)
user ID, get line from password file with MAtChingccoccveevvveiriniiiriirree e e getpw(3C)
USET ID, PLIIE ©ovviniiiiiciictc ettt id(1)
user ID, search password file for matching getpwent(3C)
USEE ID), SEE wviviiiiiicici et setuid(2)
USET NAIMIE, PIINE cuiiviviiiriititiietiiit et bbb bbbt es e bbb nt id(1)
user name, search password file for matching . .. getpwent(3C)
user processes, terminate alloccoivveeriiinieneie e ... shutdown(1M)
user, switch t0 another ... su(l)
users, print list of currentcoviiiiniiinineen .. who(1)
users, print list of users and their current processes whodo(1M)
USEAL veviviiveieiiien e ... ustat(2)

utilities, Bell Interchange Format file 0perationsccccvveeomnrercrnicineniirenieiieece e enesiresnesennes bif(5)

WBIIAC 1ottt e bt h ettt ettt et s bt eteae et nnane utime(2)
utmp accounting file, description of ... utmp(5)
utmp file current USEr SIObccoeiiiiiiiiiiniiic e e ttyslot(3C)
Utmp.h, deSCriPtION Ofcivieiiiiiiiiiirit ettt ettt et ees utmp(5)
uucico .. uucico(1M)
UUCIEAIL 11ttt uuclean(1M)
TUCD 1ttt ittt ettt e et e e st e b st b b e b e e e st b e ebe bbb bbbt e bttt bttt b b b bbbt e bbb et eanen uucep(1)

... uuxqgt(1M)
... uusub(1M)
uuclean(1M)
... uuep(l)

uucp command execution ...
uucp network, monitor activity ...
uucp spool directory clean-up ...
uucp system names, list of

uucp transactions grouped by transaction, list uuls(1)
uucp/uux transactions, 10g ofcccoeveerrnee . uucp(1)
uulog uucp(1)
uuls . uuls(1)
uuname uucp(1)

Permuted Index

TUPICK 1ottt ettt bbbt saene uuto(1)
uusnap ... uusnap(1)
uusub . uusub(1M)
LU0 ettt st s h bt et b e st b et et bea e a e e et s e se b et b ae e heeb e ae bt et es e beeaene uuto(1)
TUX ctevrererieietesesenteaese st b es et s e s bt b s st ea et sa b et a etk n Rt st ae e e bt e e st et h st n e s bt anteeaens uux(1)
uuxqt uuxqt(1M)
VAL ettt bbbt st h bt ae s bbb b an et e s ae s enes val(1)
validate password and group flleScccceiererriiiiireeeiieres ettt se et e et ee et ae et e e e ereaee s pwck(1M)
validate SCCS filecccecveuenene. .. val(1)
VALUES .ottt ettt ettt ettt ettt b et e et b et e st et s et e ettt b e et ekt eba et s beeseananbessetesteneennns values(7)
values, Mmachine-dePendentcccoveriirereereirintennire ettt saeseseses ... values(7)
VATATES .veuerrereumeeerereesrsentssssesessesessentosnsessesensesesessssennes . varargs(7)
varargs argument list, print formatted output from .. vprintf(3S)
variable argument list handling facility varargs(7)
verify C programcceeceeevvevenernenne. et ettt sttt aen et lint(1)
verify Command Set 80 cartridge tAPEcccevveriireiiriirieieiirieeeente ettt st teio(1)
verify file system consistency fsck(1M)
verify password and group files ... pwck(1M)
version 6/PWD-compatibility terminal INterfaceococoeeeurreririrenenennscreninereersreeesssesesenenes StEYV6(4)

version name, get for HP-UX . uname(1), uname(2)

version number, get revision(1)
versions, compare two SCCS file VErSiOnSccoovieiiiiiiiniiiiiiiecei e scesdiff(1)
VIOTK v ... fork(2)
Vi .. vi(1)
vi editor, database of terminal capabilities for terminfo(5)
VIBW totttitent ettt bbbt h e ehe et b e bRt h e bbbt vi(l)
viewing text, facilitate on soft-copy terminalscoccccevvieiiriienenrinieeiieeee et more(1)
virtual memory page pool, specify maximum size of uconfig(1M)
virtual memory usage, set or clear for Programcceccovveevieeriienrieenieree e e e eeeee s chatr(1)
virtual memory working set ratio, SEtccvcceeiierierieeesiniierertceeese e et e et ereesae b e eneeeaen uconfig(1M)
virtual segment, establish time segment remains memory resident .. uconfig(1M)
VIS ettt bbb bbbt b et eh e b ettt b e bbb et e b e e b bt e e b eaeeeasen s vis(1)
VISUAL tXE @IEOT woovviiveiiiiiiiiciiici st s vi(1)
volume, description of SDF volume Superblockcccceeeveirieerueririieeninienieeinieeieeccseesesie e fs(5)
volume, format, initialize, and certify SDF volume sdfinit(1M)
volume header, write LIF on filecocoviiiiiiiiiiiicniiiciciececeeee e lifinit(1)
volume, mark/unmark as HP-UX root volume .. rootmark(1M)
VDINEE ottt . vprintf(3S)
vsadv vsadv(2)
VSO 1ttt ettt ettt s ettt a bbbt a e e s ek s e ae e a e et ene s eaen et et eaeaenssannneneae vson(2)
VSOIL t1veveeresiatesesresest st ess e at et s saea et e s b eh bR bk E b bbbk E bbbtk eae e nennene vson(2)
Walt o sh(1), wait(1), wait(2)
wait for completion of Processccoevviiviiinnnniii sh(1), wait(1), wait(2)
Walk & file tT@E ..viviiiiiiici e ftw(3C)
wall wall(1M)
WC tttetett ettt et b bbb st R ek et bR b ettt s et en e bbbt aen bt b e bene s we(1)
W ettt ettt ettt et LRt h bt b b d bt et aE b b et et b e bt b et b et e st eh it et eae et nne it we(l)
what what(1)
whereis whereis(1)
while loop, exit from enclosingcccooveiiiiiiiiiiiiiiiiiicicc et sh(1)
while loop, resume the next iteration of ... sh(1)
WHO ottt ettt ettt a ettt ettt eae bt e At s e s et e tent et es et eae et et et et e aeaseaentenetan who()
whoami ... whoami(1)
WHOAO ottt e whodo(1M)
WOTA COUDL 1vviiiiiiieninietiiet ettt b et sa s ne bt a bt seenas we(l)

a

Permuted Index

word, read from buffered open fileccooiiiiiiniiiii e gete(39)
word, write on buffered open file or standard output . . pute(3S)
words, count number contained in fileoceeiiiiiiiiniiiii we(1)
working directory, change cd(1), sh(1), chdir(2)
working directory, print name ofccccooiiiiiiiiii e pwd(1)
WIIEE 1evetetittetet ettt et et .. write(1), write(2)
write character on buffered open file or standard OUtPUL ...c..cceeivieeriiiiriniiciec e putc(3S)
write current contents of memory to dis¢ccccevernnee. sync(2), sync(1)
write interactively t0 aNOLHEr USET ... write(1)
write LI volume header on flle ...t lifinit(1)
write on a file oo write(2)
write operation, reposition IEXEcciiiiieiiiiiiiiicee e e e fseek(3S)
write password fille ENEIY ..occoiiiiiiiiiiiic et putpwent(3C)
write string to open file or standard OUEPULc.coeciiiiiiiiiiiiiic e puts(3S)
write to a file using buffers fread(3S)
write t0 all USErs ...cooccevvverirevercirriecreeeeene .. wall(1M)
write word on buffered open file or standard output pute(3S)
wtmp accounting file, description of utmp(5)
wtmp records, convert from binary to ASCII fwtmp(1M)
wtmp records, correct time/date SEAMPS Oecvviviiereeeeiiierieiiiiecitetceer et raeaene e fwtmp (1M)
wtmpfix fwtmp (1M)
x.25 line, get .. getx25(1M)
KA ettt et eb et b e stk et n et et re s sa st nere s od(1)
T 0 et et bbb a e n s bessel(3M)
yl bessel(3M)

..... yace(1)
FIL ettt bttt b etttk eae o4 e et eR e ek ekt et e st et e eaenbestesa et e besaese et entteneeteseens bessel(3M)

S 41 -

Permuted Index

_42-

O

HP Part Number
09000-90008
Printed in U.S.A. 6/86

(D

HEWLETT
PACKARD

L

09000-90L5?

For Internal Use Only

I

\

